Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling

Wenxuan Zhou¹, Kevin Huang², Tengyu Ma³, Jing Huang²

University of Southern California¹, JD AI Research², Stanford University³

School of Engineering

Document-Level Relation Extraction

John Stanistreet was an Australian politician. He was born in Bendigo to legal manager John Jepson Stanistreet and Maud McIlroy. (...4 sentences...) In 1955 John Stanistreet was elected to the Victorian Legislative Assembly as the Liberal and Country Party member for Bendigo. Stanistreet died in Bendigo in 1971. Subject: John Stanistreet Died in Bendigo in 1971. Relation: place of birth; place of death

Goal: identify the relationships between the subject and object entities.

Challenges

John Stanistreet was an Australian politician. He was	Billy Mays, the bearded, boisterous pitchman who, as the		
born in Bendigo to legal manager John Jepson	undisputed king of TV yell and sell, became an unlikely		
Stanistreet and Maud Mcllroy. (4 sentences) In 1955	pop culture icon, died at his home in Tampa, Fla, on		
John Stanistreet was elected to the Victorian Legislative	Sunday.		
Assembly as the Liberal and Country Party member for Bendigo. Stanistreet died in Bendigo in 1971.	Subject: Billy Mays Object: Tampa		
Subject: John Stanistreet Object: Bendigo	Relation: city_of_death		
Relation: place of birth; place of death			
Document-level RE (DocRED)	Sentence-level RE (TACRED)		

н.

Sentence-level RE (TACRED, SemEval 2010): mention-level, one entity pair, single-label.

Document-level RE (DocRED, CDR, GDA): entity-level, multiple entity pairs, can be multi-label.

Challenges: Multi-entity

For document-level RE, one document contains multiple entity pairs, and one entity has multiple mentions.

Problems:

- 1. For a specific entity pair, only some of their mentions/context are relevant.
- 2. For one entity in different pairs, the relevant mentions/context may be different.

Challenges: Multi-label

One entity pair may be associated with multiple relations. In DocRED, 7% of entity pairs have more than 1 label.

Current approach: reduce the problem to binary classification.

Problems:

- 1. Binary classification ignores the dependencies among classes.
- 2. The predicted classes are obtained by applying a heuristic threshold to prediction scores. However, the prediction scores are not calibrated, thus one global threshold does not suffice.

Contributions

- 1. We propose localized context pooling, which transfers pretrained attention to identify relevant context that is relevant to entity pairs.
- 2. We propose adaptive-thresholding loss, which enables the learning of an adaptive threshold that is dependent on entity pairs.
- 3. Experiments on three public document-level relation extraction datasets demonstrate that our ATLOP model achieves state-of-the-art performance.

* John Stanistreet * was an Australian politician ... * Stanistreet * died in * Bendigo *

Mention-level embedding:

- Insert a "*" symbol before and after each entity mention.
- Take the embedding of "*" before the mention as mention-level embedding.

Entity-level embedding: for entities that have multiple mentions, we use logsumexp pooling to aggregate the entity mentions:

$$h_e = \log\left(\Sigma_j \exp h_{e_j}\right)$$

Base Model (cont.)

Classifier: given entity embedding h_{e_s} and h_{e_o} , we fist map them to task-specific representation *z*:

 $z_s = \tanh(W_s h_{e_s})$ $z_o = \tanh(W_o h_{e_o})$

Then we use grouped bilinear layer to get class probability:

$$[z_s^1, \dots, z_s^k] = z_s$$

$$[z_o^1, \dots, z_o^k] = z_o$$

$$P(r|e_s, e_o) = \sigma\left(\sum_{i=1}^k z_s^i W_r^i z_o^i + b_r\right)$$

Localized Context Pooling

The relevant mentions/context may be different for different entity pairs.

Intuition: the attention in pre-trained language models (BERT) captures relevant context for each token, we can use the attention to help determine the relevant context for both entities.

For two tokens *i*, *j*, a token *k* is important to both tokens if both $a_{i \rightarrow k}$ and $a_{j \rightarrow k}$ are high, thus we can use $a_i \cdot a_j$ to locate important tokens.

Localized Context Pooling (cont.)

Given an attention matrix A from the pre-trained language model, we use the attention of "*" at the start of mentions as the mention-level attention, and average mention-level attentions of the same entity as the entity-level attention A^E . Then we can obtain the localized context by:

$$A^{(s,o)} = A_s^E \cdot A_o^E$$

 $q^{(s,o)} = \sum_{i=1}^{H} A_i^{(s,o)} \text{ (average attention heads)}$ $a^{(s,o)} = q^{(s,o)}/1^T q^{(s,o)} \text{ (normalize to 1)}$ $c^{(s,o)} = H^T a^{(s,o)}$

We add the localized context to the entity pair representation by:

$$z_{s}^{(s,o)} = \tanh(W_{s}h_{e_{s}} + W_{c_{1}}c^{(s,o)})$$
$$z_{o}^{(s,o)} = \tanh(W_{o}h_{e_{o}} + W_{c_{2}}c^{(s,o)})$$

Adaptive Thresholding

The class probability is not calibrated so the same probability does not mean the same for all pairs, thus we propose to use a learnable adaptive threshold.

 P_T : positive classes.

 N_T : negative classes.

TH: adaptive threshold.

We should have:

$$P(r \in P_T) > P(TH) > P(r \in N_T)$$

Then in inference, we return classes that have higher probability than TH as positive classes.

Adaptive Thresholding (cont.)

$$\begin{aligned} \mathcal{L}_{1} &= -\sum_{r \in \mathcal{P}_{T}} \log \left(\frac{\exp\left(\text{logit}_{r} \right)}{\sum_{r' \in \mathcal{P}_{T} \cup \{\text{TH}\}} \exp\left(\text{logit}_{r'} \right)} \right), \\ \mathcal{L}_{2} &= -\log\left(\frac{\exp\left(\text{logit}_{\text{TH}} \right)}{\sum_{r' \in \mathcal{N}_{T} \cup \{\text{TH}\}} \exp\left(\text{logit}_{r'} \right)} \right), \\ \mathcal{L} &= \mathcal{L}_{1} + \mathcal{L}_{2}. \end{aligned}$$

 L_1 : positive classes have higher logits than TH. L_2 : TH has higher logits than negative classes.

Experiments: Main Results

We test our model on three document-level RE datasets DocRED, CDR and GDA.

Model	D	Dev Test		est	Model	CDR GDA	
	Ign F_1	F_1	Ign F_1	F_1	BRAN (Verga, Strubell, and McCal-	62.1	_
Sequence-based Models					lum 2018)	02.1	
CNN (Yao et al. 2019)	41.58	43.45	40.33	42.26	CNN (Nguyen and Verspoor 2018)	62.3	_
BiLSTM (Yao et al. 2019)	48.87	50.94	48.78	51.06	EoG (Christopoulou, Miwa, and	63.6	81.5
Graph-based Models					Ananiadou 2019)	0210	0110
BiLSTM-AGGCN (Guo, Zhang, and Lu 2019)	46.29	52.47	48.89	51.45	LSR (Nan et al. 2020)	64.8	82.2
BiLSTM-LSR (Nan et al. 2020)	48.82	55.17	52.15	54.18	. ,		
BERT-LSR _{BASE} (Nan et al. 2020)	52.43	59.00	56.97	59.05	SciBERT (our implementation)	65.1 ± 0.6	82.5 ± 0.3
Transformer-based Models					SciBERT-E	65.9 ± 0.5	83.3 ± 0.3
BERT _{BASE} (Wang et al. 2019a)	-	54.16	-	53.20	SciBERT-ATLOP	69.4 ± 1.1	83.9 ± 0.2
BERT-TS _{BASE} (Wang et al. 2019a)	-	54.42	-	53.92			
HIN-BERT _{BASE} (Tang et al. 2020a)	54.29	56.31	53.70	55.60	CDR and GDA		
CorefBERT _{BASE} (Ye et al. 2020)	55.32	57.51	54.54	56.96			
CorefRoBERTa _{LARGE} (Ye et al. 2020)	57.35	59.43	57.90	60.25			
Our Methods							
BERT _{BASE} (our implementation)	54.27 ± 0.28	56.39 ± 0.18	-	-			
BERT-E _{BASE}	56.51 ± 0.16	58.52 ± 0.19	-	-			
BERT-ATLOP _{BASE}	59.22 ± 0.15	61.09 ± 0.16	59.31	61.30			
RoBERTa-ATLOP _{LARGE}	61.32 ± 0.14	63.18 ± 0.19	61.39	63.40	Our model achieves SOTA		
D							

DocRED

performance on all datasets.

Experiments: Ablation Study

Model	Ign ${\cal F}_1$	F_1
BERT-ATLOP _{BASE}	59.22	61.09
 Adaptive Thresholding 	58.32	60.20
 Localized Context Pooling 	58.19	60.12
 Adaptive-Thresholding Loss 	39.52	41.74
BERT-E _{BASE}	56.51	58.52
 Entity Marker 	56.22	58.28
 Group Bilinear 	55.51	57.54
 Logsumexp Pooling 	55.35	57.40

Strategy	Dev F_1	Test F_1
Global Thresholding	60.14	60.62
Per-class Thresholding	61.73	60.35
Adaptive Thresholding	61.27	61.30

- 1. Both adaptive thresholding and localized context pooling are effective.
- 2. Adaptive thresholding performs better than both global thresholding and per-class thresholding.
- 3. Local context pooling is more effective for documents containing many entities.

Conclusion

- We propose two novel techniques, adaptive thresholding and localized context pooling.
- Our model achieves SOTA performance on three documentlevel RE datasets.
- Code released at https://github.com/wzhouad/ATLOP