

Continual Contrastive Finetuning Improves Low-Resource Relation Extraction

Wenxuan Zhou¹, Sheng Zhang², Tristan Naumann², Muhao Chen¹, Hoifung Poon² University of Southern California¹, Microsoft Research²

School of Engineering

Motivation

Manual annotation for relation extraction is expensive

Unlabeled data is abundant and easy to acquire

WikipediA The Free Encyclopedia

6.6M articles

35M citations and abstracts

180K research papers

How to use unlabeled data to improve relation extraction?

2 University of Southern California

Matching the Blanks (MTB)

Harris's distributional hypothesis to relations (Soares et al., 19):

Context linking the same/different entities is more likely to express the same/different relation.

MTB-based Pretraining (Soares et al., 19)

Positive instances: instances with the same entities

Negative instances: instances with different entities

Goal: make embedding of positive/negative instance pairs similar/dissimilar.

Continual Contrastive Finetuning

Previous work

Continual contrastive finetuning

Contrastive Pretraining

H': all relation embedding of all instances except for *t*. τ : temperature

MTB-based contrastive loss:

Make embedding between *t* and its positive/negative instances to be similar/dissimilar.

$$L_{\text{mtb}} = -\frac{1}{|P|} \sum_{h_1 \in P} \log\left(\frac{e^{\cos(h,h_1)/\tau}}{Z}\right)$$
$$Z = e^{\cos(h,h_1)/\tau} + \sum_{h_2 \in N} e^{\cos(h,h_2)/\tau}$$

Self-supervised contrastive loss:

Make the similarity between two embeddings of t to be larger than t and other instances.

$$L_{\text{self}} = -\log\left(\frac{e^{\cos(h,\hat{h})/\tau}}{Z}\right)$$
$$Z = \sum_{h_2 \in H'} e^{\cos(h,h_2)/\tau}$$

Masked language modeling loss L_{mlm} .

Distributional Gap

Make embedding from the same/different classes similar/dissimilar

Classic finetuning objectives:

Softmax classifier with cross-entropy (CE), supervised contrastive loss (SupCon) Distributional gap:

- CE and SupCon are minimized when representations form a single cluster for a class. (Graf et al., 2021)
- Representations from MTB-based pretraining may form multiple clusters for a class.

Distributional Gap (Cont.)

Probing analysis:

Given an MTB-based pretrained RE model, fix the model parameters and fit different classifiers on top of it.

Classifiers:

- Single-cluster: softmax classifier, nearest centroid classifier
- Multi-cluster: kNN

KNN greatly outperforms both softmax and nearest centroid \Rightarrow MTB-based pretraining generates multi-cluster representations.

t-SNE visualization of relation embedding

10 University of Southern California

- 1. MCCL consistently outperforms CE and SupCon in low-resource settings.
- 2. MTB+CE outperforms PLM+CE, showing that MTB pretraining is effective.
- 70 80 70 60 60 50 50 40 40 30 30 20 20 1% 5% 10% 100% 1% 5% 10% 100% PLM+CE MTB+CE MTB+SupCon MTB+MCCL ■ PLM+CE ■ MTB+CE MTB+MCCL

Models: PubmedBERT for BioRED, BERT for Re-DocRED. Evaluation metric: F1

School of Engineering

Re-DocRED

Experiments: Main Results

Datasets: BioRED, Re-DocRED (multi-label)

BioRED

Experiments: Additional Analysis

Ablation Study BioRED (MCCL)

- 1. All the pretraining objectives are effective.
- Removing MTB leads to the largest drop ⇒ MTB is critical for lowresource RE

F_1 w.r.t. different % of data

- MCCL consistently outperforms CE when < 20% of data (~80 abstracts) are used.
- 2. MCCL performs similarly to CE with abundant training data.

Conclusion

- We propose to pretrain the PLMs based on our improved MTB objective and show that it greatly improves PLM performance in low-resource document-level RE.
- 2. We bridge the gap of learning objectives between RE pretraining and finetuning with continual contrastive finetuning and kNN-based inference, helping the RE model leverage pretraining knowledge.
- 3. We design a multi-cluster contrastive learning objective, allowing one relation to form multiple different clusters, thus further reducing the distributional gap between pretraining and finetuning.

