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Classification by Pretrained Transformers
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Out-of-Distribution (OOD) Instances

In real-world applications, instances from unknown classes may be present, in which
case we need to identify and reject them.

Binary sentiment classifier | like every minute of this movie.
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Task Definition

(OOD Definition) OOD instances are instances (x, y) sampled from a different
distribution to the distribution of training data P (X¢;-4in, Yirain), Where X qin and
Yirqin are the training corpus and the training label set.

* Non-semantic shift: x € X¢rqin, V € Yirqin, €-8., @ product review for a sentiment
classifier trained on movie reviews.

e Semantic shift (our focus): y € Y;,-4in, Unknown classes.

Our goal:

1. Get an OOD scoring function that returns a high score for OOD.
2. Maintain classification performance on the main task.

3. Unsupervised. Only use in-distribution data in training.
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Overview
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Scoring functions:
Transform dense representations to
OOD scores.

Representation Learning:

Learn a representation space where in-
distribution and OOD data are well
separated.
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Contrastive Representation Learning

Motivation: for a random training instance x, instances from the same class can be
seen as “in-distribution”, while instances from other classes can be seen as “O0D”".

Increase inter-class discrepancy = Better OOD detection
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Contrastive Representation Learning (Cont.)

Supervised Contrastive Loss:

T Cosine similarity
Zp/T
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Scoring Functions

Maximum Softmax Probability (baseline):

Mahalanobis Distance:
Fit the representation space with a multivariate Gaussian distribution. Use the
probability density function as the OOD score.
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We tried other 2 scoring functions. For space limitation we don’t put them here.
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Experiments (Main)

Use different tasks as in-distribution and OOD data.

Tasks: sentiment analysis (SST2, IMDB), topic classification (20 Newsgroups),
Question classification (TREC-10)
Additional OOD datasets: RTE, MNLI, WMT16, Multi30K

AUROC 1 /FAR9S | Avg SST2 IMDB TREC-10 20NG
z MSP 94.1/35.0 88.9/613 947/40.6 98.1/7.6 94.6/30.5
«§ Energy 94.0/34.7 87.7/63.2 939/495 98.0/104 96.5/15.8
© Maha 985/73 969/183 99.8/0.7 99.0/2.7 98.3/7.3
2 Cosine 98.2/9.7 96.2/23.6 99.4/2.1 992/23 97.8/10.7
_ Lsa+MSP 90.4/46.3 89.7/59.9 935/48.6 90.2/364 88.1/39.2
kf L + Energy 90.5/43.5 88.5/64.7 928/504 90.3/322 90.2/26.8
> L + Maha 98.3/10.5 96.4/266 99.6/2.0 992/1.9  979/11.6
L + Cosine 97.7/13.0 959/28.2 99.2/4.2 99.0/24 96.8/17.0
£ Lmargin + MSP 93.0/33.7 89.7/49.2 939/463 97.6/6.5 90.9/32.6
2 Lmagin + Energy 939/31.0 89.6/488 934/52.1 984/46 94.1/18.6
3 Lmargin + Maha 99.5//1.7 99.9/0.6 100/0 99.3/0.4 98.9/6.0
2 Lmargin + Cosine  99.0/3.8 99.6/1.7 99.9/0.2 99.0/1.5 974/11.8

Lmargin + Maha achieves nearly perfect OOD detection performance.
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Experiments (Novel class detection)

Given a multi-class dataset, randomly reserve one class as OOD and treat others as

in-distribution.

AUROC 1 /FAR9S | TREC-10 20NG

MSP 73.7/56.5 76.4/80.7
Maha 75.5/56.1 77.2/74.1
Lmargin + MSP 64.1/664 74.6/82.0
Lmargin + Maha 76.6/61.3 78.5/72.7

Lmargin + Maha generally achieves better performance, but the gain is smaller.
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Visualization
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Orange: positive, blue: negative, grey: OOD

Linargin Produces more compact representations.
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Conclusion

1. We propose a margin-based contrastive objective for learning compact
representations, which, in combination with the Mahalanobis distance, achieves
near-perfect OOD detection on various tasks and datasets.

2. We propose novel class detection as the future challenge for OOD detection.

3. Future work includes extending our framework to more complex problems such
as QA and IE.
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