

Contrastive Out-of-Distribution Detection for Pretrained Transformers

Wenxuan Zhou¹, Fangyu Liu², Muhao Chen¹ University of Southern California¹, University of Cambridge²

Classification by Pretrained Transformers

Source: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Out-of-Distribution (OOD) Instances

In real-world applications, instances from unknown classes may be present, in which case we need to identify and reject them.

Binary sentiment classifier	I like every minute of this movie.
pieu	
	Positive
$\begin{bmatrix} C & T_1 & T_2 & \cdots & T_N \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	We watched this movie last night. Unknown Reject this instance

Task Definition

(OOD Definition) OOD instances are instances (x, y) sampled from a different distribution to the distribution of training data $P(X_{train}, Y_{train})$, where X_{train} and Y_{train} are the training corpus and the training label set.

- Non-semantic shift: $x \notin X_{train}, y \in Y_{train}$, e.g., a product review for a sentiment classifier trained on movie reviews.
- Semantic shift (our focus): $y \notin Y_{train}$, unknown classes.

Our goal:

- 1. Get an OOD scoring function that returns a high score for OOD.
- 2. Maintain classification performance on the main task.
- 3. Unsupervised. Only use in-distribution data in training.

Overview

f(x)

Scoring functions:

Transform dense representations to OOD scores.

Representation Learning:

Learn a representation space where indistribution and OOD data are well separated.

Contrastive Representation Learning

Motivation: for a random training instance x, instances from the same class can be seen as "in-distribution", while instances from other classes can be seen as "OOD".

Increase inter-class discrepancy ⇒ Better OOD detection

L_{cont}: Embedding instances of the same class closer and separating different classes.

Contrastive Representation Learning (Cont.)

Supervised Contrastive Loss:

$$\mathcal{L}_{\text{scl}} = \sum_{i=1}^{M} \frac{-1}{M|P(i)|} \sum_{p \in P(i)} \log \frac{e^{\boldsymbol{z}_{i}^{\mathsf{T}} \boldsymbol{z}_{p}/\tau}}{\sum_{a \in A(i)} e^{\boldsymbol{z}_{i}^{\mathsf{T}} \boldsymbol{z}_{a}/\tau}}$$
Cosine similarity Cosine similarity Cosine similarity Cosine similarity

Margin-based Contrastive Loss:

$$\begin{split} \mathcal{L}_{\text{pos}} &= \sum_{i=1}^{M} \frac{1}{|P(i)|} \sum_{p \in P(i)} \|\boldsymbol{h}_{i} - \boldsymbol{h}_{p}\|^{2}, \\ \mathcal{L}_{\text{neg}} &= \sum_{i=1}^{M} \frac{1}{|N(i)|} \sum_{n \in N(i)} (\xi - \|\boldsymbol{h}_{i} - \boldsymbol{h}_{n}\|^{2})_{+}, \\ \mathcal{L}_{\text{margin}} &= \frac{1}{dM} \left(\mathcal{L}_{\text{pos}} + \mathcal{L}_{\text{neg}} \right). \end{split}$$

Scoring Functions

Maximum Softmax Probability (baseline):

$$1 - \max_{j=1}^C p_j$$

Mahalanobis Distance:

Fit the representation space with a multivariate Gaussian distribution. Use the probability density function as the OOD score.

$$\boldsymbol{\mu}_{j} = \mathbb{E}_{y_{i}=j} [\boldsymbol{h}_{i}], j = 1, ..., C,$$

$$\boldsymbol{\Sigma} = \mathbb{E} \left[(\boldsymbol{h}_{i} - \boldsymbol{\mu}_{y_{i}}) (\boldsymbol{h}_{i} - \boldsymbol{\mu}_{y_{i}})^{\mathsf{T}} \right],$$

$$\boldsymbol{g} = -\min_{j=1}^{C} (\boldsymbol{h} - \boldsymbol{\mu}_{j})^{\mathsf{T}} \boldsymbol{\Sigma}^{+} (\boldsymbol{h} - \boldsymbol{\mu}_{j})$$

We tried other 2 scoring functions. For space limitation we don't put them here.

Experiments (Main)

Use different tasks as in-distribution and OOD data.

Tasks: sentiment analysis (SST2, IMDB), topic classification (20 Newsgroups), Question classification (TREC-10)

Additional OOD datasets: RTE, MNLI, WMT16, Multi30K

AUI	$\mathbf{ROC}\uparrow/\mathbf{FAR95}\downarrow$	Avg	SST2	IMDB	TREC-10	20NG
w/o \mathcal{L}_{cont}	MSP	94.1 / 35.0	88.9/61.3	94.7 / 40.6	98.1 / 7.6	94.6 / 30.5
	Energy	94.0 / 34.7	87.7/63.2	93.9/49.5	98.0 / 10.4	96.5 / 15.8
	Maha	98.5/7.3	96.9 / 18.3	99.8/0.7	99.0/2.7	98.3/7.3
	Cosine	98.2/9.7	96.2/23.6	99.4 / 2.1	99.2/2.3	97.8 / 10.7
w/ \mathcal{L}_{scl}	\mathcal{L}_{scl} + MSP	90.4 / 46.3	89.7 / 59.9	93.5 / 48.6	90.2 / 36.4	88.1 / 39.2
	\mathcal{L}_{scl} + Energy	90.5/43.5	88.5 / 64.7	92.8 / 50.4	90.3 / 32.2	90.2 / 26.8
	\mathcal{L}_{scl} + Maha	98.3 / 10.5	96.4 / 26.6	99.6/2.0	99.2/1.9	97.9/11.6
	\mathcal{L}_{scl} + Cosine	97.7 / 13.0	95.9 / 28.2	99.2 / 4.2	99.0/2.4	96.8 / 17.0
w/ \mathcal{L}_{margin}	$\mathcal{L}_{margin} + MSP$	93.0/33.7	89.7 / 49.2	93.9/46.3	97.6/6.5	90.9 / 32.6
	\mathcal{L}_{margin} + Energy	93.9/31.0	89.6/48.8	93.4 / 52.1	98.4/4.6	94.1 / 18.6
	\mathcal{L}_{margin} + Maha	99.5 / 1.7	99.9/0.6	100/0	99.3/0.4	98.9 / 6.0
	\mathcal{L}_{margin} + Cosine	99.0/3.8	99.6/1.7	99.9/0.2	99.0 / 1.5	97.4 / 11.8

 L_{margin} + Maha achieves nearly perfect OOD detection performance.

Experiments (Novel class detection)

Given a multi-class dataset, randomly reserve one class as OOD and treat others as in-distribution.

AUROC ↑ / FAR95 ↓	TREC-10	20NG
MSP	73.7 / 56.5	76.4 / 80.7
Maha	75.5 / 56.1	77.2 / 74.1
$\mathcal{L}_{\text{margin}}$ + MSP	64.1 / 66.4	74.6 / 82.0
\mathcal{L}_{margin} + Maha	76.6 / 61.3	78.5 / 72.7

 L_{margin} + Maha generally achieves better performance, but the gain is smaller.

Visualization

Orange: positive, blue: negative, grey: OOD

 L_{margin} produces more compact representations.

Conclusion

- 1. We propose a margin-based contrastive objective for learning compact representations, which, in combination with the Mahalanobis distance, achieves near-perfect OOD detection on various tasks and datasets.
- 2. We propose novel class detection as the future challenge for OOD detection.
- 3. Future work includes extending our framework to more complex problems such as QA and IE.

