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LM for Knowledge Base (KB) Construction

Knowledge triple: (England, Capital, London)

Language Model

England Capital

London

Pros of LM for KB construction:
1. A scalable way to represent and infer structural knowledge.
2. Can generalize to novel entities/relations.
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entity

Predicate Object
entity



Multilingual KB Construction

Motivation

1. KBs in different languages 
may contain 
complementary 
knowledge.

2. Low-resource languages 
may suffer severely from 
missing 
entities/relations.

Prix-LM: LM for multilingual KB construction and completion



Pretraining – Two Types of Knowledge

Monolingual triples: describing 
a fact in a single language

Cross-lingual links: identical 
entities/relations in two different 
languages



Pretraining – Input Representation

Convert structured inputs to text for language modeling.

Monolingual triples:

[S], [P], [O], [EOS] are special tokens indicating subject, predicate, object, end of 
sequence. [CLS], [SEP] are classification token/separators in LM.

E.g.

Cross-lingual links:

[S-LAN], [O-LAN] are special tokens indicating the languages of entities.

E.g. 

[CLS] [S] subject [SEP] [P] predicate [SEP] [O] object [EOS]

[CLS] [S] subject [SEP] [P] [S-LAN] [O-LAN] [SEP] [O] object [EOS]

[CLS] [S] England [SEP] [P] capital [SEP] [O] London [EOS]

[CLS] [S] London [SEP] [P] [EN] [ES] [SEP] [O] Londres [EOS]



Pretraining - Model

Models: pretrained masked language models (XLM-R)
LM objective: given subject and predicate, generate object.

Attention masks: prevent leakage of ground truth

[CLS] [S] USC [SEP] [P] location [SEP]    [O]      Los   Angeles

Los  Angeles [EOS]

Attentions in object: 
should not look future 
tokens.

Inputs

Outputs



Pretraining - Setup

Corpus: DBpedia in 87 languages (supported by XLM-R [Lample
et al. 2019])

• 52M monolingual triples.
• 142M cross-lingual links.

Model: finetuned from XLM-R-base using our training objective.

Hyperparameters: same as XLM-R.



Inference – Autoregressive

Goal: given subject entity 𝑒𝑠 and predicate 𝑝, determine the most 
probable object entity 𝑜 from a (large) collection of entities.

Naïve way:
- Compute LM loss for all triples 𝑒𝑠, 𝑝, 𝑜′ , 𝑜

′ ∈ 𝐸.
- Time complexity: |𝐸|

Constrained beam search:
- (High-level) idea:

- Generate one token at a time, select from tokens that 
constitute entities.

- Only keep 𝐾 sequences with the smallest LM loss in the 
expansion set for beam search.

- Repeat until [EOS] is generated or hit the maximum length.
- Time complexity: max length × 𝐾



Inference – Similarity-based

Goal: retrieve the nearest neighbors using the embedding similarity.

Method: refine the [CLS] embedding using Mirror-BERT.



Experiments - Link prediction

Task: Given subject 𝑠, predicate 𝑝, and a large collection of entities 
𝐸, determine the object entity 𝑜 ∈ 𝐸.
Data: DBpedia, randomly reserve 10% triples as test set.
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Observations:
1. Prix-LM (all) consistently outperforms other baselines.
2. Multilingual Prix-LM outperforms the monolingual one.
3. Results of Hits@3 and Hits@10 follow similar trends.



Experiments – Cross-lingual Entity Linking

Task: Link entity mentions in different languages.
Data: XL-BEL, LR-BEL
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Prix-LM (all) consistently outperforms other baselines.

We also did experiments on tasks including Bilingual Lexicon Induction, 
Prompt-based Knowledge Probing, and Link Prediction on Unseen 
Entities. Please refer to our paper for details.



Conclusion

1. We propose Prix-LM, a unified multilingual representation 
model that can capture, propagate and enrich knowledge in and 
from multilingual KBs. 

2. Prix-LM embeds knowledge from the KB in different languages 
into a shared representation space, which benefits transferring 
complementary knowledge between languages. 

3. Experiments on 4 tasks demonstrate the effectiveness and 
robustness of Prix-LM for automatic KB construction in 
multilingual setups.
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