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LM for Knowledge Base (KB) Construction

Knowledge triple: (England, Capital, London)
Subject Predicate Object

entity entity
London
@
[ Language Model ]
@ @

England Capital

Pros of LM for KB construction:
1. A scalable way to represent and infer structural knowledge.
2. Can generalize to novel entities/relations.
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Multilingual KB Construction

Multilingual KGs Motivation
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Prix-LM: LM for multilingual KB construction and completion
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Pretraining — Two Types of Knowledge

mutitingual ks . Monolingual triples: describing
5 G4 - | a fact in a single language

\
|
Itranslation

. Cross-lingual links: identical
THE TALE OF GENJI, has-genre, MONOGATARI entltles/relatlons In tWO dlfferent
------ languages

THE TALE
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USC Viterbi

School of Engineering



Pretraining — Input Representation

Convert structured inputs to text for language modeling.
Monolingual triples:

[CLS] [S] subject [SEP] [P] predicate [SEP] [O] object [EOS]

[S], [P], [O], [EOS] are special tokens indicating subject, predicate, object, end of
sequence. [CLS], [SEP] are classification token/separators in LM.

E.qg. [CLS] [S] England [SEP] [P] capital [SEP] [O] London [EOS]

Cross-lingual links:

[CLS] [S] subject [SEP] [P] [S-LAN] [O-LAN] [SEP] [O] object [EOS]

[S-LAN], [O-LAN] are special tokens indicating the languages of entities.

E.qg. [CLS] [S] London [SEP] [P] [EN] [ES] [SEP] [O] Londres [EOS]
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Pretraining - Model

Models: pretrained masked language models (XLM-R)
LM objective: given subject and predicate, generate object.

Lim=- ) logP(x|x)
x€X,U{[EOS]}
Attention masks: prevent leakage of ground truth

Outputs

Los Angeles [EOS]

Attentions in object:
should not look future
tokens.

[CLS] [S] USC [SEP] [P] location [SEP] [O] Los Angeles

Inputs
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Pretraining - Setup

Corpus: DBpedia in 87 languages (supported by XLM-R [Lample
et al. 2019])

« 52M monolingual triples.
« 142M cross-lingual links.

Model: finetuned from XLM-R-base using our training objective.

Hyperparameters: same as XLM-R.
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Inference - Autoregressive

Goal: given subject entity e; and predicate p, determine the most
probable object entity o from a (large) collection of entities.

Naive way:
- Compute LM loss for all triples (e, p,0'),0" €E.
- Time complexity: |E|

Constrained beam search:
(High-level) idea:
- Generate one token at a time, select from tokens that
constitute entities.
- Only keep K sequences with the smallest LM loss in the
expansion set for beam search.
- Repeat until [EOS] is generated or hit the maximum length.
- Time complexity: max length x K
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Inference - Similarity-based

Goal: retrieve the nearest neighbors using the embedding similarity.

Method: refine the [CLS] embedding using Mirror-BERT.
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Experiments - Link prediction

Task: Given subject s, predicate p, and a large collection of entities
E, determine the object entity o € E.
Data: DBpedia, randomly reserve 10% triples as test set.
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Observations:

1. Prix-LM (all) consistently outperforms other baselines.
2. Multilingual Prix-LM outperforms the monolingual one.
3. Results of Hits@3 and Hits@10 follow similar trends.
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Experiments — Cross-lingual Entity Linking

Task: Link entity mentions in different languages.
Data: XL-BEL, LR-BEL

80 Accuracy - XL-BEL
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Prix-LM (all) consistently outperforms other baselines.

We also did experiments on tasks including Bilingual Lexicon Induction,
Prompt-based Knowledge Probing, and Link Prediction on Unseen
Entities. Please refer to our paper for details.
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Conclusion

1. We propose Prix-LM, a unified multilingual representation
model that can capture, propagate and enrich knowledge in and
from multilingual KBs.

2. Prix-LM embeds knowledge from the KB in different languages
into a shared representation space, which benefits transferring
complementary knowledge between languages.

3. Experiments on 4 tasks demonstrate the effectiveness and
robustness of Prix-LM for automatic KB construction in
multilingual setups.

Paper & Code
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