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Abstract

Knowledge acquisition involves identifying and understanding concepts that are expressed in text,
and then inferring and consolidating their relationships. With the ever-increasing volumes of digital
text generated every day, the need for automated knowledge acquisition is becoming more crucial.
However, real-world knowledge acquisition systems face more complex scenarios where knowledge
is often expressed implicitly or within long contexts, and require models that are robust and able
to handle these complexities. Additionally, data annotation for knowledge acquisition can be
expensive, particularly in high-stakes domains, necessitating the development of efficient methods
that minimize human involvement. In this dissertation, we propose solutions to build robust and
generalizable knowledge acquisition systems, addressing challenges in: (i) extracting knowledge
from long contexts efficiently and effectively; (ii) improving system robustness in various scenarios
including noisy annotations, out-of-distribution instances, and knowledge conflicts; and (iii) data-
efficient knowledge acquisition, utilizing cheap resources such as labeling rules or unlabeled
corpora.

In the first part of this thesis, we study the extraction of knowledge from long contexts such as
documents. To handle the long-context problem, we introduce a novel pretrained-attention-guided
neural structure that finds context that both entities attend to in an entity pair. We show that our
model achieves state-of-the-art performance in both general and biomedical domains.

In the second part of this thesis, our focus is on enhancing the robustness of knowledge
acquisition systems. To start with, we investigate the mitigation of noisy labels during training.
Since the data used for knowledge acquisition is often sourced from crowdsourcing or distant
supervision, it is common for the data to be imperfect. We explore a co-regularization based
framework to address this issue effectively. Moreover, many knowledge acquisition systems are
typically developed for specialized domains or relations, making them susceptible to erroneous
predictions on instances from other domains or relations. To overcome this challenge, we propose
an out-of-distribution detection framework to identify such instances during inference and either
alert users or redirect them to other dedicated models for improved accuracy. Another challenge is
that the world is continually evolving, and the knowledge acquired by these systems may become
outdated. We explore techniques for updating the model’s predicted knowledge using context
retrieval and opinion-based prompts.

Finally, we study how to build knowledge acquisition systems with minimal human effort.
Our approach involves weak data creation, where we can generate a large amount of labeled data
by utilizing labeling a few rules developed by humans. Then, we investigate enhancing the data
efficiency of knowledge acquisition systems by self-supervised learning. To accomplish this, we
propose a framework that pretrains a model using a large unlabeled corpus, which can then be
fine-tuned with a small number of labeled instances. Additionally, we propose a novel continual
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contrastive finetuning framework that aims to minimize the discrepancy between the pretraining
and fine-tuning stages.
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Chapter 1

Introduction

1.1 Motivations
Knowledge acquisition involves recognizing concepts described in the text, inferring their rela-
tionships, and consolidating them. With large amounts of unstructured text generated every day,
automated knowledge acquisition is a critical tool for efficiently managing and processing this
information. The extracted knowledge plays a crucial role in various NLP tasks such as question
answering [2–4], fact verification [5, 6], and dialogue [7, 8]. Moreover, it provides access to expert
knowledge for domain-specific research [9–11] and clinical applications [12, 13].

Pretrained language models (PLMs; [14]) have been successful in automatic knowledge acquisi-
tion in recent years. Previous works [15–17] mainly focus on knowledge expressed within a single
sentence. However, in real-world applications, large amounts of knowledge are expressed through
multiple sentences. For example, the knowledge triple (Bill Gates, founder, Microsoft) can only be
inferred from two sentences in the following Wikipedia example:

William Henry Gates III (born October 28, 1955) is an American business magnate,
philanthropist, and investor. He is best known for co-founding software giant Microsoft,
along with his late childhood friend Paul Allen.

According to a quantitative study [18], at least 40.7% of knowledge triples in Wikipedia can only be
inferred from multiple sentences. Therefore, extending automatic knowledge acquisition beyond
individual sentences is a crucial research problem, in order to achieve a higher recall of knowledge
contained in text.

Another research problem is the discrepancy between the datasets used in academic research and
real-world applications. Typically, in academic datasets [19–21], the data for training and testing are
usually sampled from similar distributions, from similar time scopes and corpora. However, in real-
world applications, there is less control over the distribution of data during inference. This can cause
knowledge conflicts between training and testing data, particularly in scenarios where knowledge
acquisition is used to extract knowledge from new publications, where finding novel knowledge
is more important than extracting known ones. Moreover, testing data may come from different
corpora or semantic classes from those used for training in real-world applications, making the
trained knowledge acquisition systems less applicable and requiring higher robustness to distribution
shifts. These discrepancies highlight the need for knowledge acquisition systems to be more robust
in real-world applications. However, most existing studies on knowledge acquisition do not take
into account these discrepancies, raising concerns about their effectiveness in real-world settings. In
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addition, since the data in real-world scenarios are often obtained by crowdsourcing, they may have
noisy labels that degrade the system’s performance. Therefore, enhancing the system’s robustness
to noisy training labels is also a crucial problem.

Furthermore, building data-efficient knowledge acquisition systems is a challenge, especially
for high-stake domains such as biomedicine and finance. Annotators for these domain-specific
tasks require domain expertise, leading to the high cost of manual data annotation. As a result,
most existing efforts focus on distant supervision [22, 23], which consists of linking entities to an
existing knowledge base and using the relation in the knowledge base to annotate the text. However,
distant supervision is not applicable when relations of our interest do not exist in the knowledge
bases. Besides, it can suffer from the knowledge conflict problem mentioned earlier, since the
knowledge base may lack current knowledge. Another line of work focuses on few-shot knowledge
acquisition [24, 25]. This process consists of training a knowledge acquisition model on (abundant)
data from other relations first, and then adapting it to relations of our interest using a few labels.
However, such methods are not suitable for high-stakes domains where data for other relations is
also scarce. Therefore, constructing data-efficient knowledge acquisition systems remains a crucial
research problem.

In this dissertation, we aim to build robust and generalizable knowledge acquisition systems
that are: (i) able to extract knowledge from context beyond individual sentences; (ii) robust to the
shifts between training and testing data, and noise in the training data; and (iii) requiring minimal
human efforts.

1.2 Challenges

In this dissertation, we address several key challenges. First, to extract knowledge from long
contexts, the knowledge acquisition system must be able to identify salient contextual information
between pairs of entities. In addition, since a pair of entities may have multiple relations, multi-label
prediction also represents a challenge. Second, since current datasets for knowledge acquisition
do not address the issue of robustness, we need to develop experimental settings to measure the
robustness and dedicated frameworks to improve it. Third, to enhance data efficiency, we need to
address the problem from two angles: (1) obtaining annotated data with minimal human effort and
(2) utilizing labels more effectively through dedicated frameworks. The details of the challenges we
address in this dissertation are listed below:

• Knowledge acquisition from long contexts. To efficiently and effectively extract knowledge
from long contexts, the system needs to address two challenges:

(i) Identifying salient context. Current datasets for long-context knowledge acquisition can
contain up to thousands of words [26], whereas a single knowledge triple is usually expressed
within only a few sentences. Therefore, it is important for systems to identify relevant context
in order to avoid being overwhelmed by large amounts of irrelevant information. However, it
is usually hard to annotate salient context by humans, and it can be challenging to learn how
to locate relevant context from scratch. To address this issue, systems may need to leverage
additional syntactic and semantic information in order to accurately identify relevant context.
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(ii) Multi-label prediction. Since an entity pair may appear multiple times in context, it often
has more than one relation types, making knowledge acquisition from long context a multi-
label prediction problem. For example, in the DocRED dataset [18], over 15% of entity pairs
have more than one relation type. Although the common practice is to convert this problem
into several binary classification problems, it involves adjusting various thresholds for each
relation type on development data, which may not generalize to the test data. Additionally,
this approach encounters a calibration issue as different entity pairs may have different optimal
thresholds.

• Robustness of knowledge acquisition systems. As mentioned earlier, robustness in this
context comprises several dimensions, such as distributional shifts, knowledge conflicts, and
noisy training labels. However, these aspects have been less explored in previous research,
which calls for setting up appropriate experimental settings and metrics to evaluate these
aspects. Another challenge in improving robustness lies in the fact that it is impossible to
know the distribution of testing data before deploying a system. As a result, it is essential to
develop strategies that can improve robustness in an unsupervised way.

• Data-efficient knowledge acquisition. In order to enhance data efficiency, there are two
primary challenges that must be addressed. First, data annotation is a necessary step, unless
distant supervision can be utilized. While for high-stake domains, data annotation is both
time-consuming and highly expensive. As a result, a major challenge is how to decrease the
cost of data annotation. Second, since unlabeled data is often abundant, another challenge is
how to effectively leverage this data to improve the system.

1.3 Thesis Contributions
• We propose a framework for document-level relation extraction that addresses both the salient

context and the multi-label prediction challenge. Specifically, we introduce localized context
pooling, which leverages attention in PLMs to identify relevant context for entity pairs.
Additionally, we propose the use of an adaptive-thresholding loss, which allows the model to
learn an adaptive threshold is adaptive to entity pairs.

• We present a co-regularization framework that can efficiently train supervised models using
noisy datasets, which consists of multiple models with different initialization and a regulariza-
tion loss that enforces the outputs of different models to be similar. We also discuss various
design strategies and balance efficiency with effectiveness.

• We propose to identify and reject instances that are from different distributions to training,
making the model abstain from making unconfident predictions. To achieve this, we propose a
framework for unsupervised out-of-distribution detection using contrastive learning to expand
the boundaries between different classes. We also explore various combinations of contrastive
learning losses and out-of-distribution scoring functions to achieve the best performance in
this challenging task.

• We study the knowledge conflict problem in knowledge acquisition, where the system needs
to extract the knowledge faithfully to the context and avoid memorizing knowledge in the
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pretraining corpus. we focus on large language models and present two techniques, namely
opinion-based prompts and counterfactual demonstrations.

• We propose to reduce the annotation cost using labeling rules. To solve the low coverage prob-
lem of rules, we propose a framework that learns to generalize labeling rules to semantically
similar instances by neural rule grounding.

• To leverage unlabeled data in knowledge acquisition, we propose to first pretrain the PLMs
based on matching-the-blanks objectives, and then finetune PLMs on task-specific data. To
minimize the gap in training objectives between pretraining and finetuning, we propose to
use a consistent contrastive loss in pretraining and finetuning, and use kNN-based inference.
Furthermore, we design an MCCL finetuning objective, allowing one relation to form mul-
tiple different clusters, thus further reducing the distributional gap between pretraining and
finetuning.

1.4 Thesis Overview

Part I: Knowledge Acquisition in Documents

• Chapter 2:

This chapter introduces the ATLOP (Adaptive Thresholding and Localized cOntext Pooling)
framework for document-level relation extraction. We propose two techniques, namely
adaptive thresholding and localized context pooling, to address the challenges of multi-
label classification and identifying salient context. Adaptive thresholding overcomes the
limitations of a global threshold in prior work by introducing a learnable, entity-dependent
threshold. Localized context pooling directly transfers the attention from PLMs to locate
context that is salient for relation classification. Our experiments on three benchmark datasets
for document-level RE, including DocRED in the general domain, as well as CDR and GDA
in the biomedical domain, demonstrate the effectiveness of our proposed framework.

Part II: Robust Knowledge Acquisition

• Chapter 3:

In this chapter, we introduce a co-regularization framework that addresses the challenge of
noisy training labels. Our approach is motivated by studies showing that noisy labels are
more difficult to memorize during training and are more prone to being forgotten than clean
labels, making them identifiable during training. To mitigate this issue, we propose a simple
co-regularization framework for information extraction. This framework consisits of several
neural models with identical structures but different parameter initialization. These models are
jointly optimized with task-specific losses and are regularized to produce similar predictions
based on an agreement loss, which prevents overfitting on noisy labels. Our extensive
experiments on two information extraction benchmarks demonstrate the effectiveness of our
proposed framework.
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• Chapter 4:

In this chapter, we present our framework for detecting out-of-distribution (OOD) instances,
which can lead to significant semantic shift problems during inference. In practice, it is crucial
for a reliable model to identify such instances and either reject them during inference or pass
them on to models that can handle them. To address this issue, we propose an unsupervised
OOD detection method that uses only in-distribution (ID) data during training. Our approach
involves fine-tuning PLMs with a contrastive loss, which improves the compactness of
representations, making it easier to distinguish OOD instances from ID ones. We use the
Mahalanobis distance in the model’s penultimate layer to accurately detect OOD instances.
Our comprehensive experiments demonstrate near-perfect OOD detection performance.

• Chapter 5:

This chapter focuses on techniques for mitigating knowledge conflicts in large language
models (LLMs). LLMs have demonstrated exceptional performance in knowledge-driven
NLP tasks due to their ability to encode parametric knowledge about world facts. However,
this reliance on parametric knowledge may cause them to miss contextual cues, leading to
inaccurate predictions in context-sensitive NLP tasks. To address this issue, we propose
techniques to assess and enhance LLMs’ contextual faithfulness in two aspects: knowledge
conflict and prediction with abstention. We show that LLMs’ contextual faithfulness can be
significantly improved using carefully designed prompting strategies, namely opinion-based
prompts and counterfactual demonstrations. Opinion-based prompts reframe the context
as a narrator’s statement and inquire about the narrator’s opinions, while counterfactual
demonstrations use instances containing false facts to improve faithfulness in knowledge-
conflict situations.

Part III: Data-efficient Knowledge Acquisition

• Chapter 6:

In this chapter, we introduce the NERO framework, which enables efficient data annotation by
creating labeling rules instead of seeking more instance-level labels from human annotators.
These rules can be automatically mined from large text corpora and generalized using a soft
rule-matching mechanism. Our framework consists of a relation extraction (RE) module and
a soft matching module. The RE module can be instantiated with any neural model, while the
soft matching module learns to match rules with semantically similar sentences. This process
allows raw corpora to be automatically labeled. We conduct extensive experiments and
analysis on two widely-used public datasets, demonstrating the effectiveness of the proposed
NERO framework compared to both rule-based and semi-supervised methods. Through user
studies, we find NERO yields a 9.5x speedup of annotation compared to human annotation.

• Chapter 7:

In this chapter, we introduce continual contrastive finetuning for data-efficient knowledge
acquisition. The approach involves self-supervised learning, where the relation embedding is
pretrained using a RE-based objective and then finetuned on labeled data using a classification-
based objective. To bridge the gap between pretraining and finetuning, we propose using
consistent objectives of contrastive learning for both stages of training. We also propose
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a multi-center contrastive loss that allows one relation to form multiple clusters in the
representation space, which better aligns with pretraining. Our experiments on two document-
level RE datasets, demonstrate the effectiveness of our approach.

Part IV: Conclusion

• Chapter 8:

This chapter summarizes the contributions of the thesis and discusses several future directions.
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Chapter 2

Document-level Relation Extraction

Document-level relation extraction (RE) poses new challenges compared to its sentence-level
counterpart. One document commonly contains multiple entity pairs, and one entity pair occurs
multiple times in the document associated with multiple possible relations. We propose two
novel techniques, adaptive thresholding and localized context pooling, to solve the multi-label
and multi-entity problems. The adaptive thresholding replaces the global threshold for multi-label
classification in the prior work with a learnable entities-dependent threshold. The localized context
pooling directly transfers attention from pre-trained language models to locate relevant context that
is useful to decide the relation. We experiment on three document-level RE benchmark datasets:
DocRED, a recently released large-scale RE dataset, and two datasets CDR and GDA in the
biomedical domain. Our ATLOP (Adaptive Thresholding and Localized cOntext Pooling) model
achieves an F1 score of 63.4, and also significantly outperforms existing models on both CDR and
GDA1.

2.1 Introduction
Relation extraction (RE) aims to identify the relationship between two entities in a given text and
plays an important role in information extraction. Existing work mainly focuses on sentence-level
relation extraction, i.e., predicting the relationship between entities in a single sentence [28–30].
However, large amounts of relationships, such as relational facts from Wikipedia articles and
biomedical literature, are expressed by multiple sentences in real-world applications [18, 31]. This
problem, commonly referred to as document-level relation extraction, necessitates models that can
capture complex interactions among entities in the whole document.

Compared to sentence-level RE, document-level RE poses unique challenges. For sentence-level
RE datasets such as TACRED [20] and SemEval 2010 Task 8 [19], a sentence only contains one
entity pair to classify. On the other hand, for document-level RE, one document contains multiple
entity pairs, and we need to classify the relations of them all at once. It requires the RE model
to identify and focus on the part of the document with relevant context for a particular entity
pair. In addition, one entity pair can occur many times in the document associated with distinct
relations for document-level RE, in contrast to one relation per entity pair for sentence-level RE.
This multi-entity (multiple entity pairs to classify in a document) and multi-label (multiple relation
types for a particular entity pair) properties of document-level relation extraction make it harder

1This chapter is based on Zhou, Huang, Ma & Huang [27].
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John Stanistreet was an Australian politician. He was 

born in Bendigo to legal manager John Jepson 

Stanistreet and Maud McIlroy. (…4 sentences…) In 1955 

John Stanistreet was elected to the Victorian Legislative 

Assembly as the Liberal and Country Party member for 

Bendigo. Stanistreet died in Bendigo in 1971.

Subject: John Stanistreet Object: Bendigo

Relation: place of birth; place of death

Figure 2.1: An example of multi-entity and multi-label problems from the DocRED dataset. Subject
entity John Stanistreet (in orange) and object entity Bendigo (in green) express relations place of
birth and place of death. The related entity mentions are connected by lines. Other entities in the
document are highlighted in grey.

than its sentence-level counterpart. Figure 2.1 shows an example from the DocRED dataset [18].
The task is to classify the relation types of pairs of entities (highlighted in color). For a particular
entity pair (John Stanistreet, Bendigo), it expresses two relations place of birth and place of death
by the first two sentences and the last sentence. Other sentences contain irrelevant information to
this entity pair.

To tackle the multi-entity problem, most current approaches construct a document graph with
dependency structures, heuristics, or structured attention [32–35], and then perform inference
with graph neural models [36, 37]. The constructed graphs bridge entities that spread far apart
in the document and thus alleviate the deficiency of RNN-based encoders [38, 39] in capturing
long-distance information [40]. However, as transformer-based models [41] can implicitly model
long-distance dependencies [42, 43], it is unclear whether graph structures still help on top of
pre-trained language models such as BERT [14]. There have also been approaches to directly apply
pre-trained language models without introducing graph structures [44, 45]. They simply average
the embedding of entity tokens to obtain the entity embeddings and feed them into the classifier to
get relation labels. However, each entity has the same representation in different entity pairs, which
can bring noise from irrelevant context.

Instead of introducing graph structures, we propose a localized context pooling technique. This
technique solves the problem of using the same entity embedding for all entity pairs. It enhances
the entity embedding with additional context that is relevant to the current entity pair. Instead of
training a new context attention layer from scratch, we directly transfer the attention heads from
pre-trained language models to get entity-level attention. Then, for two entities in a pair, we merge
their attentions by multiplication to find the context that is important to both of them.
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For the multi-label problem, existing approaches reduce it to a binary classification problem.
After training, a global threshold is applied to the class probabilities to get relation labels. This
method involves heuristic threshold tuning and introduces decision errors when the tuned threshold
from development data may not be optimal for all instances.

We propose the adaptive thresholding technique, which replaces the global threshold with a
learnable threshold class. The threshold class is learned with our adaptive-threshold loss, which
is a rank-based loss that pushes the logits of positive classes above the threshold and pulls the
logits of negative classes below in model training. At the test time, we return classes that have
higher logits than the threshold class as the predicted labels or return NA if such class does not exist.
This technique eliminates the need for threshold tuning, and also makes the threshold adjustable to
different entity pairs, which leads to much better results.

By combining the proposed two techniques, we propose a simple yet effective relation extraction
model, named ATLOP (Adaptive Thresholding and Localized cOntext Pooling), to fully utilize
the power of pre-trained language models [14, 46]. This model tackles the multi-label and multi-
entity problems in document-level RE. Experiments on three document-level relation extraction
datasets, DocRED [18], CDR [47], and GDA [48], demonstrate that our ATLOP model significantly
outperforms the state-of-the-art methods. The contributions of our work are summarized as follows:

• We propose adaptive-thresholding loss, which enables the learning of an adaptive threshold
that is dependent on entity pairs and reduces the decision errors caused by using a global
threshold.

• We propose localized context pooling, which transfers pre-trained attention to grab related
context for entity pairs to get better entity representations.

• We conduct experiments on three public document-level relation extraction datasets. Experi-
mental results demonstrate the effectiveness of our ATLOP model that achieves state-of-the-art
performance on three benchmark datasets.

2.2 Problem Formulation
Given a document d and a set of entities {ei}n

i=1, the task of document-level relation extraction is
to predict a subset of relations from R ∪{NA} between the entity pairs (es,eo)s,o=1...n; s̸=o, where
R is a pre-defined set of relations of interest, es,eo are identified as subject and object entities,
respectively. An entity ei can occur multiple times in the document by entity mentions {mi

j}
Nei
j=1. A

relation exists between entities (es,eo) if it is expressed by any pair of their mentions. The entity
pairs that do not express any relation are labeled NA. At the test time, the model needs to predict the
labels of all entity pairs (es,eo)s,o=1...n;s ̸=o in document d.

2.3 Enhanced BERT Baseline
In this section, we present our base model for document-level relation extraction. We build our
model based on existing BERT baselines [18, 44] and integrate other techniques to further improve
the performance.
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2.3.1 Encoder

Given a document d = [xt ]
l
t=1, we mark the position of entity mentions by inserting a special symbol

“*” at the start and end of mentions. It is adapted from the entity marker technique [16, 20, 49]. We
then feed the document into a pre-trained language model to obtain the contextual embeddings:

H = [h1,h2, ...,hl] = BERT([x1,x2, ...,xl]). (2.1)

Following previous work [31, 50], the document is encoded once by the encoder, and the classifica-
tion of all entity pairs is based on the same contextual embedding. We take the embedding of “*” at
the start of mentions as the mention embeddings. For an entity ei with mentions {mi

j}
Nei
j=1, we apply

logsumexp pooling [51], a smooth version of max pooling, to get the entity embedding hei .

hei = log
Nei

∑
j=1

exp
(

hmi
j

)
. (2.2)

This pooling accumulates signals from mentions in the document. It shows better performance
compared to mean pooling in experiments.

2.3.2 Binary Classifier

Given the embedding (hes,heo) of an entity pair es,eo computed by equation 2.2, we map the entities
to hidden states z with a linear layer followed by non-linear activation, then calculate the probability
of relation r by bilinear function and sigmoid activation. This process is formulated as:

zs = tanh(Wshes) , (2.3)
zo = tanh(Woheo) , (2.4)

P(r|es,eo) = σ (z⊺s Wrzo +br) ,

where Ws ∈ Rd×d , Wo ∈ Rd×d , Wr ∈ Rd×d,br ∈ R are model parameters. The representation of
one entity is the same among different entity pairs. To reduce the number of parameters in the
bilinear classifier, we use the group bilinear [52, 53], which splits the embedding dimensions into k
equal-sized groups and applies bilinear within the groups:[

z1
s ; ...;zk

s

]
= zs,[

z1
o; ...;zk

o

]
= zo,

P(r|es,eo) = σ

(
k

∑
i=1

zi⊺
s Wi

rz
i
o +br

)
, (2.5)

where Wi
r ∈ Rd/k×d/k for i = 1...k are model parameters, P(r|es,eo) is the probability that relation

r is associated with the entity pair (es,eo). In this way, we can reduce the number of parameters
from d2 to d2/k. We use the binary cross entropy loss for training. During inference, we tune a
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Figure 2.2: An artificial illustration of our proposed adaptive-thresholding loss. A TH class is
introduced to separate positive classes and negative classes: positive classes would have higher
probabilities than TH, and negative classes would have lower probabilities than TH.

global threshold θ that maximizes evaluation metrics (F1 score for RE) on the development set and
return r as an associated relation if P(r|es,eo)> θ or return NA if no relation exists.

Our enhanced base model achieves near state-of-the-art performance in our experiments, signifi-
cantly outperforms existing BERT baselines.

2.4 Adaptive Thresholding

The RE classifier outputs the probability P(r|es,eo) within the range [0,1], which needs thresholding
to be converted to relation labels. As the threshold neither has a closed-form solution nor is
differentiable, a common practice for deciding threshold is enumerating several values in the range
(0,1) and picking the one that maximizes the evaluation metrics (F1 score for RE). However, the
model may have different confidence for different entity pairs or classes in which one global
threshold does not suffice. The number of relations varies (multi-label problem) and the models
may not be globally calibrated so that the same probability does not mean the same for all entity
pairs. This problem motivates us to replace the global threshold with a learnable, adaptive one,
which can reduce decision errors during inference.

For the convenience of explanation, we split the labels of entity pair T = (es,eo) into two subsets:
positive classes PT and negative classes NT , which are defined as follows:

• positive classes PT ⊆ R are the relations that exist between the entities in T . If T does not
express any relation, PT is empty.

• negative classes NT ⊆ R are the relations that do not exist between the entities. If T does not
express any relation, NT = R.

If an entity pair is classified correctly, the logits of positive classes should be higher than the
threshold while those of negative classes should be lower. Here we introduce a threshold class TH,
which is automatically learned in the same way as other classes (see Eq.2.5). At the test time, we
return classes with higher logits than the TH class as positive classes or return NA if such classes do
not exist. This threshold class learns an entities-dependent threshold value. It is a substitute for the
global threshold and thus eliminates the need for tuning threshold on the development set.
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To learn the new model, we need a special loss function that considers the TH class. We
design our adaptive-thresholding loss based on the standard categorical cross-entropy loss. The loss
function is broken down into two parts as shown below:

L1 =− ∑
r∈PT

log

(
exp(logitr)

∑r′∈PT∪{TH} exp(logitr′)

)
,

L2 =− log

(
exp(logitTH)

∑r′∈NT∪{TH} exp(logitr′)

)
,

L = L1 +L2.

The first part L1 involves positive classes and the TH class. Since there may be multiple positive
classes, the total loss is calculated as the sum of categorical cross entropy losses on all positive
classes [54, 55]. L1 pushes the logits of all positive classes to be higher than the TH class. It is not
used if there is no positive label. The second part L2 involves the negative classes and threshold
class. It is a categorical cross entropy loss with TH class being the true label. It pulls the logits of
negative classes to be lower than the TH class. Two parts are simply summed for the total loss.

The proposed adaptive-thresholding loss is illustrated in Figure 2.2. It obtains a large perfor-
mance gain to the global threshold in our experiments.

2.5 Localized Context Pooling

The logsumexp pooling (see Eq. 2.2) accumulates the embedding of all mentions for an entity across
the whole document and generates one embedding for this entity. The entity embedding from this
document-level global pooling is then used in the classification of all entity pairs. However, for
an entity pair, some context of the entities may not be relevant. For example, in Figure 2.1, the
second mention of John Stanistreet and its context are irrelevant to the entity pair (John Stanistreet,
Bendigo). Therefore, it is better to have a localized representation that only attends to the relevant
context in the document that is useful to decide the relation for this entity pair.

Therefore we propose localized context pooling, where we enhance the embedding of an entity
pair with an additional local context embedding that is related to both entities. In this work, since
we use pre-trained transformer-based models as the encoder, which has already learned token-level
dependencies by multi-head self-attention [41], we consider directly using their attention heads for
localized context pooling. This method transfers the well-learned dependencies from the pre-trained
language model without learning new attention layers from scratch.

Specifically, given a pre-trained multi-head attention matrix A ∈ RH×l×l , where Ai jk represents
attention from token j to token k in the ith attention head, we first take the attention from the “*”
symbol as the mention-level attention, then average the attention over mentions of the same entity
to obtain entity-level attention AE

i ∈ RH×l , which denotes attention from the ith entity to all tokens.

12
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Figure 2.3: Illustration of localized context pooling. Tokens are weighted averaged to form the
localized context c(s,o) of the entity pair (es,eo). The weights of tokens are derived by multiplying
the attention weights of the subject entity es and the object entity eo from the last transformer layer
so that only the tokens that are important to both entities (highlighted in light yellow) receive higher
weights.

Then given an entity pair (es,eo), we locate the local context that is important to both es and eo by
multiplying their entity-level attention, and obtain the localized context embedding c(s,o) by:

A(s,o) = AE
s ·AE

o ,

q(s,o) =
H

∑
i=1

A(s,o)
i ,

a(s,o) = q(s,o)/1⊺q(s,o),

c(s,o) = H⊺a(s,o),

where H is the contextual embedding in Eq. 2.1. The localized context embedding is then fused into
the globally pooled entity embedding to obtain entity representations that are different for different
entity pairs, by modifying the original linear layer in Eq. 2.3 and Eq. 2.4 as follows:

z(s,o)s = tanh
(

Wshes +Wc1c(s,o)
)
, (2.6)

z(s,o)o = tanh
(

Woheo +Wc2c(s,o)
)
, (2.7)

where Wc1,Wc2 ∈Rd×d are model parameters. The proposed localized context pooling is illustrated
in Figure 2.3. In experiments, we use the attention matrix from the last transformer layer.
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Statistics DocRED CDR GDA

# Train 3053 500 23353
# Dev 1000 500 5839
# Test 1000 500 1000
# Relations 97 2 2
Avg.# entities per Doc. 19.5 7.6 5.4

Table 2.1: Statistics of the datasets in experiments.

Hyperparam DocRED CDR GDA
BERT RoBERTa SciBERT SciBERT

Batch size 4 4 4 16
# Epoch 30 30 30 10
lr for encoder 5e-5 3e-5 2e-5 2e-5
lr for classifier 1e-4 1e-4 1e-4 1e-4

Table 2.2: Hyper-parameters in training.

2.6 Experiments

2.6.1 Datasets
We evaluate our ATLOP model on three public document-level relation extraction datasets. The
dataset statistics are shown in Table 2.1.

• DocRED [18] is a large-scale crowdsourced dataset for document-level RE. It is constructed
from Wikipedia articles. DocRED consists of 3053 documents for training. For entity pairs
that express relation(s), about 7% of them have more than one relation label.

• CDR [47] is a human-annotated dataset in the biomedical domain. It consists of 500 doc-
uments for training. The task is to predict the binary interactions between Chemical and
Disease concepts.

• GDA [48] is a large-scale dataset in the biomedical domain. It consists of 29192 articles for
training. The task is to predict the binary interactions between Gene and Disease concepts.
We follow Christopoulou, Miwa & Ananiadou [34] to split the training set into an 80/20 split
as training and development sets.

2.6.2 Experiment Settings
Our model is implemented based on Huggingface’s Transformers [58]. We use cased BERT-
base [14] or RoBERTa-large [46] as the encoder on DocRED, and cased SciBERT [59] on CDR and
GDA. We use mixed-precision training [60] based on the Apex library2. Our model is optimized

2https://github.com/NVIDIA/apex
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Model Dev Test
Ign F1 F1 Ign F1 F1

Sequence-based Models
CNN [18] 41.58 43.45 40.33 42.26
BiLSTM [18] 48.87 50.94 48.78 51.06

Graph-based Models
BiLSTM-AGGCN [37] 46.29 52.47 48.89 51.45
BiLSTM-LSR [35] 48.82 55.17 52.15 54.18
BERT-LSRBASE [35] 52.43 59.00 56.97 59.05

Transformer-based Models
BERTBASE [44] - 54.16 - 53.20
BERT-TSBASE [44] - 54.42 - 53.92
HIN-BERTBASE [45] 54.29 56.31 53.70 55.60
CorefBERTBASE [56] 55.32 57.51 54.54 56.96
CorefRoBERTaLARGE [56] 57.35 59.43 57.90 60.25

Our Methods
BERTBASE (our implementation) 54.27 ± 0.28 56.39 ± 0.18 - -
BERT-EBASE 56.51 ± 0.16 58.52 ± 0.19 - -
BERT-ATLOPBASE 59.22 ± 0.15 61.09 ± 0.16 59.31 61.30
RoBERTa-ATLOPLARGE 61.32 ± 0.14 63.18 ± 0.19 61.39 63.40

Table 2.3: Main results (%) on the development and test set of DocRED. We report the mean and
standard deviation of F1 on the development set by conducting 5 runs of training using different
random seeds. We report the official test score of the best checkpoint on the development set.

Model CDR GDA

BRAN [31] 62.1 -
CNN [57] 62.3 -
EoG [34] 63.6 81.5
LSR [35] 64.8 82.2

SciBERT (our implementation) 65.1 ± 0.6 82.5 ± 0.3
SciBERT-E 65.9 ± 0.5 83.3 ± 0.3
SciBERT-ATLOP 69.4 ± 1.1 83.9 ± 0.2

Table 2.4: Test F1 score (%) on CDR and GDA dataset. Our ATLOP model with the SciBERT
encoder outperforms the current SOTA results.

with AdamW [61] using learning rates ∈ {2e−5,3e−5,5e−5,1e−4}, with a linear warmup [62] for
the first 6% steps followed by a linear decay to 0. We apply dropout [63] between layers with rate
0.1, and clip the gradients of model parameters to a max norm of 1.0. We perform early stopping
based on the F1 score on the development set. All hyper-parameters are tuned on the development
set. We list some of the hyper-parameters in Table 2.2.
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For models that use a global threshold, we search threshold values from {0.1,0.2, ...,0.9} and
pick the one that maximizes dev F1. All models are trained with 1 Tesla V100 GPU. For the
DocRED dataset, the training takes about 1 hour 45 minutes with BERT-base encoder and 3 hours
30 minutes with RoBERTa-large encoder. For CDR and GDA datasets, the training takes 20 minutes
and 3 hours 30 minutes with SciBERT encoder, respectively.

2.6.3 Main Results
We compare ATLOP with sequence-based models, graph-based models, and transformer-based
models on the DocRED dataset. The experiment results are shown in Table 2.3. Following Yao, Ye,
Li, Han, Lin, Liu, et al. [18], we use F1 and Ign F1 in evaluation. The Ign F1 denotes the F1 score
excluding the relational facts that are shared by the training and dev/test sets.
Sequence-based Models. These models use neural architectures such as CNN [64] and bidirectional
LSTM [65] to encode the entire document, then obtain entity embeddings and predict relations for
each entity pair with bilinear function.
Graph-based Models. These models construct document graphs by learning latent graph structures
of the document and perform inference with graph convolutional network [66]. We include two
state-of-the-art graph-based models, AGGCN [37] and LSR [35], for comparison. The result of
AGGCN is from the re-implementation by Nan, Guo, Sekulic & Lu [35].
Transformer-based Models. These models directly adapt pre-trained language models to document-
level RE without using graph structures. They can be further divided into pipeline models (BERT-
TS [44]), hierarchical models (HIN-BERT [45]), and pre-training methods (CorefBERT and Core-
fRoBERTa [56]). We also include the BERT baseline [44] and our re-implemented BERT baseline
in comparison.

We find that our re-implemented BERT baseline gets significantly better results than Wang,
Focke, Sylvester, Mishra & Wang [44], and outperforms the state-of-the-art RNN-based model
BiLSTM-LSR by 1.2%. It demonstrates that pre-trained language models can capture long-distance
dependencies among entities without explicitly using graph structures. After integrating other
techniques, our enhanced baseline BERT-EBASE achieves an F1 score of 58.52%, which is close to
the current state-of-the-art model BERT-LSRBASE. Our BERT-ATLOPBASE model further improves
the performance of BERT-EBASE by 2.6%, demonstrating the efficacy of the proposed two novel
techniques. Using RoBERTa-large as the encoder, our ALTOP model achieves an F1 score of
63.40%, which is a new state-of-the-art result on DocRED.

2.6.4 Results on Biomedical Datasets
Experiment results on two biomedical datasets are shown in Table 2.4. Verga, Strubell & McCallum
[31] and Nguyen & Verspoor [57] are both sequence-based models that use self-attention network
and CNN as the encoders, respectively. Christopoulou, Miwa & Ananiadou [34] and Nan, Guo,
Sekulic & Lu [35] use graph-based models that construct document graphs by heuristics or structured
attention, and perform inference with graph neural network. To our best knowledge, transformer-
based pre-trained language models have not been applied to document-level RE datasets in the
biomedical domain. In experiments, we replace the encoder with SciBERT, which is pre-trained
on multi-domain corpora of scientific publications. The SciBERT baseline already outperforms all
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Model Ign F1 F1

BERT-ATLOPBASE 59.22 61.09
− Adaptive Thresholding 58.32 60.20
− Localized Context Pooling 58.19 60.12
− Adaptive-Thresholding Loss 39.52 41.74

BERT-EBASE 56.51 58.52
− Entity Marker 56.22 58.28
− Group Bilinear 55.51 57.54
− Logsumexp Pooling 55.35 57.40

Table 2.5: Ablation study of ATLOP on DocRED. We turn off different components of the model
one at a time. These ablation results show that both adaptive thresholding and localized context
pooling are effective. Logsumexp pooling and group bilinear both bring noticeable gain to the
baseline.

Strategy Dev F1 Test F1

Global Thresholding 60.14 60.62
Per-class Thresholding 61.73 60.35
Adaptive Thresholding 61.27 61.30

Table 2.6: Result of different thresholding strategies on DocRED. Our adaptive thresholding
consistently outperforms other strategies on the test set.

existing methods. Our SciBERT-ATLOP model further improves the F1 score by 4.3% and 1.4% on
CDR and GDA, respectively, yielding new state-of-the-art results on these two datasets.

2.6.5 Ablation Study

To show the efficacy of our proposed techniques, we conduct two sets of ablation studies on ATLOP
and enhanced baseline, by turning off one component at a time. We observe that all components
contribute to model performance. The adaptive thresholding and localized context pooling are
equally important to model performance, leading to a drop of 0.89% and 0.97% in dev F1 score
respectively when removed from ATLOP. Note that the adaptive thresholding only works when the
model is optimized with the adaptive-thresholding loss. Applying adaptive thresholding to models
trained with binary cross entropy results in dev F1 of 41.74%.

For our enhanced baseline model BERT-EBASE, both group bilinear and logsumexp pooling lead
to about 1% increase in dev F1. We find the improvement from entity markers is minor (0.24% in
dev F1) but still use the technique in the model as it makes the derivation of mention embedding
and mention-level attention easier.
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Figure 2.4: Dev F1 score of documents with the different number of entities on DocRED. Our
localized context pooling achieves better results when the number of entities is larger than 5. The
improvement becomes more significant when the number of entities increases.

2.6.6 Analysis of Thresholding
Global thresholding does not consider the variations of model confidence in different classes or
instances, and thus yields suboptimal performance. One interesting question is whether we can
improve global thresholding by tuning different thresholds for different classes. To answer this
question, We try to tune different thresholds on different classes to maximize the dev F1 score on
DocRED using the cyclic optimization algorithm [67]. Results are shown in Table 2.6. We find
that using per-class thresholding significantly improves the dev F1 score to 61.73%, which is even
higher than the result of adaptive thresholding. However, this gain does not transfer to the test set.
The result of per-class thresholding is even worse than global thresholding. It indicates that tuning
per-class thresholding after training can lead to severe over-fitting to the development set. While our
adaptive thresholding technique learns the threshold in training, which can generalize to the test set.

2.6.7 Analysis of Context Pooling
To show that our localized context pooling (LOP) technique mitigates the multi-entity issue, we
divide the documents in the development set of DocRED into different groups by the number
of entities, and evaluate models trained with or without localized context pooling on each group.
Experiment results are shown in Figure 2.4. We observe that for both models, their performance gets
worse when the document contains more entities. The model w/ LOP consistently outperforms the
model w/o LOP except when the document contains very few entities (1 to 5), and the improvement
gets larger when the number of entities increases. However, the number of documents that only
contain 1 to 5 entities is very small (4 in the dev set), and the documents in DocRED contain 19
entities on average. Therefore our localized context pooling still improves the overall F1 score
significantly. This indicates that the localized context pooling technique can capture related context
for entity pairs and thus alleviates the multi-entity problem.

We also visualize the context weights of the example in Figure 2.1. As shown in Figure 2.5,
our localized context pooling gives high weights to born and died, which are most relevant to both
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John Stanistreet was an Australian politician. He wa
s born in Bendigo to legal manager John Jepson Stan
istreet and Maud McIlroy. (… 4 sentences …) In 195
5 John Stanistreet was elected to the Victorian Legisl
ative Assembly as the Liberal and Country Party mem
ber for Bendigo, but he was defeated in 1958. Stanistr
eet died in Bendigo in 1971. 
 
Subject: John Stanistreet Object: Bendigo 

Relation: place of birth; place of death 

Figure 2.5: Context weights of an example from DocRED. We visualize the weight of context
tokens a(s,o) in localized context pooling. The model attends to the most relevant context born and
died for entity pair (John Stanistreet, Bendigo).

entities (John Stanistreet, Bendigo). These two tokens are also evidence for the two ground truth
relationships place of birth and place of death, respectively. Tokens like elected and politician
get much smaller weights because they are only related to the subject entity John Stanistreet. The
visualization demonstrates that the localized context can locate the context that is related to both
entities.

2.7 Related Work
Early research efforts on relation extraction concentrate on predicting the relationship between two
entities within a sentence. Various approaches including rule-based methods [68, 69], sequence-
based methods [20, 28, 70], graph-based methods [29, 30, 37, 71], transformer-based methods [15,
16], and pre-training methods [49, 72] have been shown effective in tackling this problem.

However, as large amounts of relationships are expressed by multiple sentences [18, 31], recent
work starts to explore document-level relation extraction. Most approaches on document-level RE
are based on document graphs, which were introduced by Quirk & Poon [73]. Specifically, they use
words as nodes and inner and inter-sentential dependencies (dependency structures, coreferences,
etc.) as edges. This document graph provides a unified way of extracting the features for entity pairs.
Later work extends the idea by improving neural architectures [31, 32, 51, 74, 75] or adding more
types of edges [34, 35, 76]. In particular, Christopoulou, Miwa & Ananiadou [34] constructs nodes
of different granularities (sentence, mention, entity), connects them with heuristically generated
edges, and infers the relations with an edge-oriented model [77]. Nan, Guo, Sekulic & Lu [35]
treats the document graph as a latent variable and induces it by structured attention [33]. This work
also proposes a refinement mechanism to enable multi-hop information aggregation from the whole
document. Their LSR model achieved state-of-the-art performance on document-level RE.

There have also been models that directly apply pre-trained language models without introducing
document graphs, since edges such as dependency structures and coreferences can be automatically
learned by pre-trained language models [42, 43, 78, 79]. In particular, Wang, Focke, Sylvester,
Mishra & Wang [44] proposes a pipeline model that first predicts whether a relationship exists in
an entity pair and then predicts the specific relation types. Tang, Cao, Zhang, Cao, Fang, Wang,
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et al. [45] proposes a hierarchical model that aggregates entity information from the entity level,
sentence level, and document level. Ye, Lin, Du, Liu, Sun & Liu [56] introduces a copy-based
training objective to pre-training, which enhances the model’s ability in capturing coreferential
information and brings noticeable gain on various NLP tasks that require coreferential reasoning.

However, none of the models focus on the multi-entity and multi-label problems, which are
among the key differences of document-level RE to its sentence-level RE counterpart. Our ATLOP
model deals with the two problems by two novel techniques: adaptive thresholding and localized
context pooling, and significantly outperforms existing models.

2.8 Conclusion
In this work, we propose the ATLOP model for document-level relation extraction, which features
two novel techniques: adaptive thresholding and localized context pooling. The adaptive threshold-
ing technique replaces the global threshold in multi-label classification with a learnable threshold
class that can decide the best threshold for each entity pair. The localized context pooling utilizes
pre-trained attention heads to locate relevant context for entity pairs and thus helps in alleviating
the multi-entity problem. Experiments on three public document-level relation extraction datasets
demonstrate that our ATLOP model significantly outperforms existing models and yields new
state-of-the-art results on all datasets.
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Chapter 3

Noisy Label Learning

Recent information extraction approaches have relied on training deep neural models. However,
such models can easily overfit noisy labels and suffer from performance degradation. While it is
very costly to filter noisy labels in large learning resources, recent studies show that such labels take
more training steps to be memorized and are more frequently forgotten than clean labels, therefore
are identifiable in training. Motivated by such properties, we propose a simple co-regularization
framework for entity-centric information extraction, which consists of several neural models with
identical structures but different parameter initialization. These models are jointly optimized with
the task-specific losses and are regularized to generate similar predictions based on an agreement
loss, which prevents overfitting on noisy labels. Extensive experiments on two widely used but noisy
benchmarks for information extraction, TACRED and CoNLL03, demonstrate the effectiveness of
our framework1.

3.1 Introduction
Deep neural models have achieved significant success on various information extraction (IE) tasks.
However, when training labels contain noise, deep neural models can easily overfit the noisy labels,
leading to severe performance degradation [81, 82]. Unfortunately, labeling on large corpora,
regardless of using human annotation [83] or automated heuristics [84], inevitably suffers from
labeling errors. This problem has even drastically affected widely used benchmarks, such as
CoNLL03 [85] and TACRED [20], where a notable portion of incorrect labels have been caused in
annotation and largely hindered the performance of SOTA systems [86, 87]. Hence, developing
a robust learning method that better tolerates noisy supervision represents an urged challenge for
emerging IE models.

So far, few research efforts have been made to developing noise-robust IE models, and existing
work mainly focuses on the weakly supervised or distantly supervised setting [88–91]. Most of such
methods typically depend on multi-instance learning that relies on bags of instances provided by
distant supervision [14, 23, 88] or require an additional clean and sufficiently large reference dataset
to develop a noise filtering model [92]. Accordingly, those methods may not be generally adapted to
supervised training settings, where the aforementioned auxiliary learning resources are not always
available. Particularly, CrossWeigh [93] is a representative work that denoises a natural language
dataset without using extra learning resources. This method trains multiple independent models

1This chapter is based on Zhou & Chen [80].
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Figure 3.1: Illustration of our co-regularization framework. The base models are jointly optimized
with the task-specific loss from label y and an agreement loss, which regularizes the models to
generate similar predictions to the aggregated soft target probability qqq.

on different partitions of training data and downweighs instances on which the models disagree.
Though effective, a method of this kind requires training tens of redundant neural models, leading
to excessive computational overhead for large models. As far as we know, the problem of noisy
labels in supervised learning for IE tasks has not been well investigated.

We aim to develop a general denoising framework that can easily incorporate existing supervised
learning models for entity-centric IE tasks. Our method is motivated by studies [81, 94] showing
that noisy labels often have delayed learning curves, as incorrectly labeled instances are more likely
to contradict the inductive bias captured by the model. Hence, noisy label instances take a longer
time to be picked up by neural models and are frequently forgotten in later epochs. Therefore,
predictions by more than one model tend to disagree on such instances. Accordingly, we propose
a simple yet effective co-regularization framework to handle noisy training labels, as illustrated
in Figure 3.1. Our framework consists of two or more neural classifiers with identical structures
but different initialization. In training, all classifiers are optimized on the training data with the
task-specific loss and jointly regularized with regard to an agreement loss that is defined as the
Kullback–Leibler (KL) divergence among predicted probability distributions. Then for instances
where a classifier’s predictions disagree with labels, the agreement loss encourages the classifier to
give similar predictions to the other classifier(s) instead of the actual (possibly noisy) labels. In this
way, the framework prevents the incorporated classifiers from overfitting noisy labels.

We apply the framework to two important entity-centric IE tasks, named entity recognition
(NER) and relation extraction (RE). We conduct extensive experiments on two prevalent but
noisy benchmarks, CoNLL03 for NER and TACRED for RE, and apply the proposed learning
frameworks to train various models from prior studies for these two tasks. The results demonstrate
the effectiveness of our method in noise-robust training, leading to promising and consistent
performance improvement. We present contributions as follows:

• We propose a general co-regularization framework that can effectively learn supervised IE
models from noisy datasets without the need for any extra learning resources.
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• We discuss in detail the different design strategies of the framework and the trade-off between
efficiency and effectiveness.

• Extensive experiments on NER and RE demonstrate that our framework yields promising
improvements on various SOTA models and outperforms existing denoising frameworks.

3.2 Method
We focus on developing a noise-robust learning framework that improves supervised models for
entity-centric IE tasks. In such tasks, (noisy) labels can be assigned to either individual tokens (NER)
or pairs of entities (RE) in natural language text. Specifically, D = {(xxxi,yi)}N

i=1 is a noisily labeled
dataset, where each data instance consists of a lexical sequence or a context xxx, and a label y. y
is annotated either on tokens of xxx for NER or on a pair of entity mentions in xxx for RE. For some
instances in D , the labels are incorrect. Our objective is to learn a noise-robust model f with the
presence of such noisily labeled instances from D without using external resources such as a clean
development dataset [92].

3.2.1 Learning Process

Our framework is motivated by the delayed learning curve of a neural model on noisy data, compared
with learning on clean data. On noisy data, neural models tend to fit easy and clean instances that
are more consistent with the well-represented patterns of data in early steps but need more steps
to capture noise [81]. Moreover, learned noisy examples tend to be frequently forgotten in later
epochs [94] since they conflict with the general inductive bias represented by the clean data majority.
Therefore, model prediction is likely to be consistent with the clean labels while is often inconsistent
or oscillates on noisy labels over different training epochs. As a result, labels that are different
from the model’s predictions in the later epochs of training are likely to be noisy and should be
down-weighted or rectified so as to reduce their impact on optimization.

The proposed framework incorporates several copies of a task-specific IE model with the
same architecture but different (random) parameter initialization. These IE models are jointly
optimized on the noisy dataset based on their task-specific losses as well as on an agreement
loss. During training, the predicted probability distributions from models are aggregated as a soft
target probability, which represents the models’ estimations of the true label. The agreement loss is
responsible for encouraging these models to generate similar predictions to the soft target probability.
In this learning process, models starting their training from varied initialization generate different
decision boundaries. By aggregating their predictions, the soft target probability can better separate
noisy labels from clean labels that have not yet been learned.

The learning process of our framework is described in Algorithm 1. It consists of M (M ≥
2) copies of the task-specific model, denoted { fk}M

k=1, with different initialization. Regarding
initialization, for models that are trained from scratch, all parameters are randomly initialized.
Otherwise, for those that are built upon pre-trained language models, only the parameters that
are external to the language models (e.g., those of a downstream softmax classifier) are randomly
initialized, while the pre-trained parameters are the same. Once initialized, our framework trains
those models in two phases. The first α% training steps undergo a warm-up phase, where α is a
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Algorithm 1: Learning Process
Input: Dataset D , hyperparameters T,α,M,γ .
Output: A trained model f .
Initialize M neural models { fk}M

k=1.
for t = 1...T do

Sample a batch B from D .
Calculate task losses {L (k)

sup}M
k=1.

LT = 1
M ∑

M
k=1 L

(k)
sup

if t < α%×T then // Warmup
Update model parameters w.r.t. LT .

else
Get the probability distribution of classes {ppp}M

k=1 with M models.
Calculate the soft target probability qqq by Equation 3.1.
Calculate the agreement loss Lagg by Equation 3.2 and Equation 3.3.
L = LT + γ ·Lagg.
Update model parameters w.r.t. L .

Return f1 or the best-performing model.

hyperparameter. This phase seeks to help the model reach initial convergence on the task. When
a new batch comes in, we first calculate the task-specific training losses on M models {L (k)

sup}M
k=1

and average them as LT , then update model parameters w.r.t. LT . After the warm-up phase, an
agreement loss Lagg is further introduced to measure the distance from the predictions of M models
to the soft target probability qqq. Parameters are accordingly updated based on the joint loss L ,
encouraging the model to generate predictions that are consistent with both the training labels and
the soft target probability. The formalization of the loss function is described next (Section 3.2.2).
In the end, we can either use the model f1 or select the best-performing model for inference.

3.2.2 Co-regularization Objective

In our framework, the influence of noisy labels in training is decreased by optimizing the agreement
loss. Specifically, given a batch of data instances B = {(xxxi,yi)}N

i=1, we first feed the instances to M

incorporated models to get their predictions
{
{ppp(k)i }N

i=1

}M

k=1
on B, where ppp ∈ RC is the predicted

probability distribution of C classes. Then we calculate the soft target probability qqq by averaging
the predictions:

qqqi =
1
M

M

∑
k=1

ppp(k)i , (3.1)
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which represents the models’ estimates of the true label. Finally, we calculate the agreement loss
Lagg as the average KL divergence from qqq to each ppp(k),k = 1, ...,M:

d(qqqi||ppp
(k)
i ) =

C

∑
j=1

qqqi j log

(
qqqi j + ε

pppi j + ε

)
, (3.2)

Lagg =
1

MN

N

∑
i=1

M

∑
k=1

d(qqqi||ppp
(k)
i ), (3.3)

where ε is a small positive number to avoid division by zero. We can easily tell that the agreement
loss encourages the models to get similar predictions based on the same input. As the KL divergence
is non-negative, the agreement loss is minimized only when qqqi = ppp(k)i for k = 1, ...,M, which implies
that all ppp(k)i should be equal because we use the average probability for qqq. We may also use other
aggregates for qqq as long as they satisfy that qqqi = ppp(k)i ,k = 1, ...,M when all ppp(k)i are equal so as to
maintain such property of the agreement loss. We consider the following alternatives for qqq:

• Average logits. Given the logits {lll(k)i }M
k=1 of predicted probabilities on the M models, we

first average the logits llli =
1
M ∑

M
k=1 lll(k)i and then feed llli to a softmax function to get the soft

target probability qqq.

• Max-loss probability. A noise-robust model will disagree on noisy labels and produce large
training losses. Therefore, for each instance i in the batch, we assume the prediction p∗i that
has the largest task-specific loss among the M models to be more reliable and use it as the
soft target probability for instance i.

In experiments, we observe that all aggregate functions generally achieve similar performance. We
present the results of different qqq in Section 3.4.6.

3.2.3 Joint Training

The main learning objective of our framework is then to optimize the joint loss L = LT + γLagg,
where γ is a positive hyperparameter and LT is the average of task-specific classification losses{

L
(k)

sup

}M

k=1
. For classification problems such as NER and RE, the task-specific loss is defined as

the following cross-entropy loss, where III denotes an indicator function:

Lsup =− 1
N

N

∑
i=1

C

∑
j=1

III [yi = j] log pppi j. (3.4)

N thereof is the number of tokens for NER and the number of sentences for RE.
The joint training can be interpreted as a “soft-pruning” scheme. For clean labels where the

models’ predictions are usually close to the labels, the agreement loss and its gradient are both
small, so they have a small impact on training. While for noisy labels where the model predictions
disagree with the training labels, the agreement loss incurs a large magnitude of gradients in training,
which prevents the model from overfitting the noisy labels.
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Besides co-regularization, denoising may also be attempted by “hard-pruning” the noisy labels.
Small-loss selection [95, 96] assumes that instances with large task-specific loss are noisy and
excludes them from training. However, some clean label instances, especially those from long-tail
classes, can also have large task-specific losses and will be incorrectly pruned. While for the
frequent classes, some noisy instances can have smaller task-specific losses and fail to be identified.
Such errors can accumulate during training and may hinder model performance. In our framework,
as we use the agreement loss instead of hard pruning, such errors will not be easily propagated (see
Section 3.4.6).

3.3 Tasks

We evaluate our framework on two fundamental entity-centric IE tasks, namely RE and NER. Our
framework can incorporate any kind of neural model that is dedicated to either task. Particularly, we
adopt off-the-shelf SOTA models that are mainly based on Transformers. This section introduces
the two attempted tasks and the design of task-specific models.

Relation extraction. RE aims at identifying the relations between a pair of entities in a piece of text
from the given vocabulary of relations. Specifically, given a sentence xxx and two entities es and eo,
identified as the subject and object entities respectively, the goal is to predict the relation between
es and eo. Following Shi & Lin [16], we formulate this task as a sentence classification problem.
Accordingly, we first apply the entity masking technique [20] to the input sentence and replace the
subject and object entities with their named entity types. For example, a short sentence “Bill Gates
founded Microsoft” will become “[SUBJECT-PERSON] founded [OBJECT-ORGANIZATION]” after
entity masking. We then feed the sentence to the pre-trained language model and use a softmax
classifier on the representation of the [CLS] token to predict the relation.

Named entity recognition. NER seeks to locate and classify named entities in text into pre-defined
categories. Following Devlin, Chang, Lee & Toutanova [14], we formulate the task as a token
classification problem. In detail, a Transformer-based language model first tokenizes an input
sentence into a sub-token sequence. To classify each token, the representation of its first sub-token
is sent into a softmax classifier. We use the BIO tagging scheme [97] and output the tag with the
maximum likelihood as the predicted label.

3.4 Experiment

In this section, we evaluate the proposed learning framework based on two (noisy) benchmark
datasets for the two entity-centric IE tasks (Section 3.4.1-Section 3.4.4). In addition, a noise
filtering analysis is presented to show how our framework prevents an incorporated neural model
from overfitting noisy training data (Section 3.4.5), along with a detailed ablation study about
configurations with varied model copies, alternative noise filtering strategies, target functions, and
different noise rates (Section 3.4.6).
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Dataset # train # dev # test # classes % noise

TACRED 68124 22631 15509 42 6.62
CoNLL03 14041 3250 3453 9 5.38

Table 3.1: Data statistics of TACRED and CoNLL03.

3.4.1 Datasets

The experiments are conducted on TACRED [20] and CoNLL03 [85]. TACRED is a crowdsourced
dataset for relation extraction. A recent study by Alt, Gabryszak & Hennig [87] found a large
portion of examples to be mislabeled and rectified some incorrect labels in the development and test
sets. CoNLL03 is a human-annotated dataset for NER. Another study by Wang, Shang, Liu, Lu,
Liu & Han [93] found that in 5.38% of sentences in CoNLL03, at least one token is mislabeled.
Accordingly, Wang, Shang, Liu, Lu, Liu & Han [93] also relabeled the test set2. We summarize the
statistics of both datasets in Table 3.1. For all compared methods, we report the results on both the
original and relabeled evaluation sets.

3.4.2 Base Models

We evaluate our framework by incorporating the following SOTA models:

• C-GCN [30] is a graph-based model for RE. It prunes the dependency graph and applies
graph convolutional networks to get the representation of entities.

• BERT [14] is a Transformer-based language model that is pre-trained from large-scale text
corpora. Both Base and Large versions of the model are considered in our experiments.

• LUKE [98] is a Transformer-based language model that is pre-trained on both large-scale
text corpora and knowledge graphs. It achieves SOTA performance on various entity-related
tasks, including RE and NER.

We report the performance of the base models trained with and without our co-regularization
framework. We also compare our framework to CrossWeigh [93], which is another noisy-label
learning framework. Specifically, CrossWeigh partitions the training set into equal-sized chunks,
reserves each chunk, and then trains several models on the rest ones. After training, the models
predict on the reserved chunk, and instances on which the models disagree are down-weighted.
In the end, the chunks are combined and used to train a new model for inference. Learning by
CrossWeigh is dependant on a high computation cost. Wang, Shang, Liu, Lu, Liu & Han [93] split
the CoNLL03 dataset into 10 chunks and train 3 models on each partition, resulting in a total of
number 30 models. We follow their settings and train 30 models on both TACRED and CoNLL03.

2Note that neither of these two datasets comes with a relabeled (clean) training set. All models are still trained on
the original noisy training set.
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Model Original Relabeled
Dev F1 Test F1 Dev F1 Test F1

C-GCN ♣ [30] 67.2 66.7 74.9 74.6
C-GCN-CrossWeigh 67.8 67.4 75.6 75.7
C-GCN-CR 67.7 67.2 75.6 75.4

BERTBASE [14] 69.1 68.9 76.4 76.9
BERTBASE-CrossWeigh 71.3 70.8 79.2 79.1
BERTBASE-CR 71.5 71.1 79.9 80.0

BERTLARGE [14] 70.9 70.2 78.3 77.9
BERTLARGE-CrossWeigh 72.1 71.9 79.5 79.8
BERTLARGE-CR 73.1 73.0 81.3 82.0

LUKE ♣ [98] 71.1 70.9 80.1 80.6
LUKE-CrossWeigh 71.0 71.6 80.4 81.6
LUKE-CR 71.8 72.4 81.9 83.1

Table 3.2: F1 score (%) on the dev and test set of TACRED. ♣ marks results obtained from the
originally released implementation. We report the median of F1 on 5 runs of training using different
random seeds. For fair comparison, the CR results are reported based on the predictions from model
f1 in our framework.

3.4.3 Model Configurations
For base models C-GCN [30] and LUKE [98], we rerun the officially released implementations
using the recommended hyperparameters in the original papers. We implement BERTBASE and
BERTLARGE based on Huggingface’s Transformers [99]. For CrossWeigh [93], we re-implement
this framework using those compared base models. All models are optimized with Adam [100]
using a learning rate of 6e−5 for TACRED and that of 1e−5 for CoNLL03, with a linear learning
rate decay to 0. The batch size is fixed as 64 for all models. We finetune the TACRED model for
5 epochs and the CoNLL03 model for 50 epochs. The best model checkpoint is chosen based on
the F1 score on the development set. We tune γ from {1.0,2.0,5.0,10.0,20.0}, and tune α from
{10,30,50,70,90}. We report the median of F1 of 5 runs using different random seeds.

For efficiency, we use the simplest setup of our framework with two model copies (M = 2) in
the main experiments (Section 3.4.4). qqq is set as the average probability in the main experiment.
Performance with more model copies and alternative aggregates is later studied in Section 3.4.6.

3.4.4 Main Results
The experiment results on TACRED and CoNLL03 are reported in Table 3.2 and Table 3.3 respec-
tively, where methods incorporated in our learning framework are marked with “CR”. As stated, the
results are reported under the setup where M = 2. For a fair comparison, the results are reported
based on the predictions from model f1 in the framework. On TACRED, our framework leads to an
absolute improvement of 2.5−4.1% in F1 on the relabeled test set for Transformer-based models,
and a relatively smaller gain (0.8% in F1) for C-GCN. In particular, our framework enhances the
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Model Original Relabeled
Dev F1 Test F1 Test F1

BERTBASE [14] 95.58 91.96 92.91
BERTBASE-CrossWeigh 95.65 92.15 93.03
BERTBASE-CR 95.87 92.53 93.48

BERTLARGE [14] 96.16 92.24 93.22
BERTLARGE-CrossWeigh 96.32 92.49 93.61
BERTLARGE-CR 96.59 92.82 94.04

LUKE ♣ [98] 97.03 93.91 95.60
LUKE–CrossWeigh 97.09 93.98 95.75
LUKE-CR 97.21 94.22 95.88

Table 3.3: F1 score (%) on the dev and test set of CoNLL03. ♣ marks results obtained using the
originally released code.

SOTA method LUKE by 2.5% in F1, leading to a very promising F1 score of 83.1%. On CoNLL03,
where the noise rate is smaller than TACRED, our framework leads to a performance gain of
0.28− 0.82% in F1 on the relabeled test set. On both IE tasks, our framework also leads to a
consistent improvement on the original test set. Compared to CrossWeigh, except for C-GCN where
the results are similar, our framework consistently outperforms it by 0.9−2.2% on TACRED and by
0.13−0.45% on CoNLL03. Moreover, as our framework requires training M models concurrently
while CrossWeigh requires training redundant models (30 in experiments), the computation cost of
our co-regularization framework is much lower than CrossWeigh. In general, the results here show
the effectiveness and practicality of the proposed framework.

3.4.5 Noise Filtering Analysis

The main experiments show that our framework can improve the overall performance of models
trained with noisy labels. In this section, we further demonstrate how our framework prevents
overfitting on noisy labels. To do so, we extract the 2,526 noisy instances from the development
and test sets of TACRED where the relabeling by Alt, Gabryszak & Hennig [87] disagrees with the
original labels. Accordingly, we obtain a noisy set containing those examples with original labels
and a clean set with rectified labels. We train a relation classifier on the union of the training set
and the noisy set and then evaluate the model on the clean set. In this case, worse performance on
the clean set indicates more severe overfitting on noisy labels.

Figure 3.2 shows the results by C-GCN-CR and BERTBASE-CR on the clean set, where we
observe that: (1) Compared to the original base models (γ = 0.0), those trained with our framework
achieves higher F1 scores, indicating improved robustness against the label noise; (2) Comparing
different base models, the large classifier BERTBASE is typically less noise-robust than a smaller
model like C-GCN, which explains why the performance gain from our framework is more notable
on BERTBASE; (3) For both models, the F1 score first increases then decreases, consistent with the
delayed learning curves that the neural models have on noisy instances [81].
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Figure 3.2: F1 score (%) on the clean set of TACRED. Classifiers trained with our framework are
more noise-robust compared to baselines (γ = 0).

# Models 2 3 4

BERTBASE-CR 80.0 79.5 79.8
BERTLARGE-CR 82.0 82.4 82.7

Table 3.4: F1 score (%) of using different number of models on the relabeled test set of TACRED.

3.4.6 Ablation Study

Using extra model copies. The main results show that using two copies of a model in the co-
regularization framework has already improved the performance by a remarkable margin. Intuitively,
more models may generate higher-quality soft target probabilities and thus further improve the
performance. We further show the performance on TACRED by incorporating more model copies.
We report the relabeled test F1 on TACRED in Table 3.4. We observe that increasing the number of
copies does not necessarily lead to a notable increase in performance. On BERTLARGE, increasing
the number of model copies from 2 to 4 gradually improves the performance from 82.0% to 82.7%.
While on BERTBASE, increasing the number of model copies does not improve the performance.
We notice that the increased number of copies leads to a significant increase in the agreement loss
for BERTBASE, indicating that the copies of BERTBASE fail to reach a consensus based on the
same input. This may be due to the relatively small model capacity of BERTBASE. Overall, this
study shows that the optimal M is dependent on the models and needs to be tuned on the specific
task. Note that as the models can be trained in parallel, increasing the number of models does not
necessarily increase the training time, though being at the cost of more computational resources.

Alternative strategies for noise filtering. Besides co-regularization, we also experiment with other
noise-filtering strategies. Small-loss selection [95, 96, 101] prunes the instances with the largest
training losses in the training batches. This method is motivated by the fact that the noisy instances
take a longer time to be memorized and usually cause a large training loss. We further try another
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Model Original Relabeled
Test F1 Test F1

BERTBASE 68.9 76.9
BERTBASE + Small-loss selection 68.7 76.6
BERTBASE + Relabeling 69.0 77.7

Table 3.5: F1 score (%) of alternative noise filtering strategies on the test set of TACRED. The best
results are achieved when δ = 2% for both methods.

Functions Avg prob Avg logit Max-loss prob

BERTBASE-CR 80.0 79.9 79.4
BERTLARGE-CR 82.0 81.6 82.2

Table 3.6: F1 score (%) of different functions for qqq on the relabeled test set of TACRED.

strategy named relabeling. Instead of pruning the large-loss training instances, we relabel them with
the most likely labels from model predictions.

We evaluate the two noise filtering strategies on TACRED using BERTBASE as the base model.
For both strategies, we prune/relabel δt = δ · t

T percent of examples with the largest training loss in
each training batch following Han, Yao, Yu, Niu, Xu, Hu, et al. [96], where t is the current number
of training steps, T is the total number of training steps, and δ is the maximum pruning/relabeling
rate. These hyperparameters are tuned on the development set. The training loss is defined as
the average task-specific loss of the M models, where we set M = 2 in consistent with the main
experiments (Section 3.4.4). We try δ from {2%,5%,8%} and report the best results.

Results are shown in Table 3.5. We find that δ = 2% achieves the best performance for both
strategies. The small-loss selection strategy underperforms the base model without noise filtering.
Relabeling outperforms the base model slightly, but the improvements are lesser than the proposed
co-regularization method. We observe that these two strategies do not work well on imbalanced
datasets, mostly pruning or relabeling training examples from long-tail classes. Specifically, on
the TACRED dataset, where the NA class accounts for 80% of the total labels, only 20% pruned
labels are from NA while the remaining 80% are from other classes. It is because that the model’s
predictions will be biased towards the frequent classes on imbalanced datasets, therefore leading to
the large training loss on long-tail instances. Once pruned or relabeled, such long-tail instances are
excluded from training, causing further error propagation that can lead to more biased predictions.
Our framework, on the contrary, adopts an agreement loss instead of hard pruning or relabeling,
which reduces such error propagation.

Alternative aggregates for qqq. Besides the average probability, we evaluate two other aggregates
for qqq, i.e. the average logits and the max-loss probability (Section 3.2.2). This experiment is
conducted with M = 2. F1 results on the relabeled TACRED test set (Table 3.6) suggest that
different aggregates generally achieve comparable performance,with a marginal difference of up to
0.6% in F1. Therefore, the default setup is suggested to be the average probability, which is easier
to implement.
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Flipped labels (%) 10 30 50 70 90

BERTBASE 74.2 70.8 62.9 48.6 0
BERTBASE-CrossWeigh 77.3 75.6 71.6 61.3 25.1
BERTBASE-CR 79.3 78.3 73.2 63.5 34.1

BERTBASE w/o flipped labels 76.5 74.9 72.9 70.8 57.4

Table 3.7: F1 score (%) under different noise rates on the relabeled set of TACRED.

Performance under different noise rates. We further evaluate our framework on training data of
different noise rates. To do so, we create noisy training data by randomly flipping 10%, 30%, 50%,
70%, or 90% labels in the training set of TACRED. Then we use those synthetic noisy training sets
to train RE models and evaluate them on the relabeled test set of TACRED. We use BERTBASE as
the base model and report the median F1 score of 5 trials. Results are given in Table 3.7, which show
that our co-regularization framework consistently outperforms both the base model and CrossWeigh
under different noise rates. The gain generally becomes larger as the noise rate increases. In
comparison to BERTBASE trained on the training sets where all flipped labels are removed, our
framework, even trained on synthetic noise, achieves comparable or better results when the noise
rates are below 50%.

3.5 Related Work

We discuss two lines of related work. Each has a large body of work which we can only provide as
a highly selected summary.

Distant supervision. Distant supervision [22, 102] generates noisy training data with heuristics to
align unlabeled data with labels, whereas much effort has been devoted to reducing labeling noise.
Multi-instance learning [23, 103–105] creates bags of noisily labeled instances and assumes at least
one instance in each bag is correct, then it uses heuristics or auxiliary classifiers to select the correct
labels. However, such instance bags may not exist in a general supervised setting. Reinforcement
learning [92, 106, 107] and curricular learning [90, 95] methods use a clean validation set to
obtain an auxiliary model for noise filtering, while constructing a perfectly labeled validation set is
expensive. Our framework can learn noise-robust IE models without extra learning resources and
can be easily incorporated into existing supervised IE models.

Supervised learning with noisy labels. A deep neural network can memorize noisy labels, and
its generalizability will severely degrade when trained with noisy labels [82]. In computer vision,
much investigation has been conducted for supervised image classification with noise, producing
techniques such as robust loss functions [108–111], noise filtering layers [112, 113], label re-
weighting [114, 115], robust regularization [63, 116–119], and sample selection [95, 96, 120–122].
The robust loss functions and noise filtering layers require modifying model structures and may
not be easily adapted to IE models. The sample selection methods assume the data instances with
large training losses to be noisy and exclude them from training. However, some clean instances,
especially those from long-tail classes, can also have a large training loss and be wrongly pruned,
leading to propagated errors.
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In NLP, few efforts have focused on learning with denoising. CrossWeigh [93], one label
re-weighting method, partitions the training data into multiple folds and trains multiple models
on each fold. Instances on which models disagree are regarded as noisy and down-weighted in
training. However, this method requires training many models and is computationally expensive.
Our framework only requires training several models concurrently, which is more computationally
efficient and achieves better performance. NetAb [123] assumes that noisy labels are created from
randomly flipping clean labels and uses a CNN to model the noise transition matrix [124]. However,
this assumption does not hold for real datasets, where the noise rate vary among data instances [125].

3.6 Conclusion
This chapter presents a co-regularization framework for learning supervised IE models from
noisy data. This framework consists of two or more identically structured models with different
initialization, which are encouraged to give similar predictions on the same inputs by optimizing
an agreement loss. On noisy examples where model predictions usually differ from the labels, the
agreement loss prevents the model from overfitting noisy labels. Experiments on NER and RE
benchmarks show that our framework yields promising improvements on various IE models. For
future work, we plan to extend the use of the proposed framework to other tasks such as event-centric
IE [126] and co-reference resolution [127].
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Chapter 4

Out-of-distribution Detection

Pretrained Transformers achieve remarkable performance when training and test data are from the
same distribution. However, in real-world scenarios, the model often faces out-of-distribution (OOD)
instances that can cause severe semantic shift problems at inference time. Therefore, in practice, a
reliable model should identify such instances, and then either reject them during inference or pass
them over to models that handle another distribution. We develop an unsupervised OOD detection
method, in which only the in-distribution (ID) data are used in training. We propose to fine-tune
the Transformers with a contrastive loss, which improves the compactness of representations, such
that OOD instances can be better differentiated from ID ones. These OOD instances can then be
accurately detected using the Mahalanobis distance in the model’s penultimate layer. We experiment
with comprehensive settings and achieve near-perfect OOD detection performance, outperforming
baselines drastically. We further investigate the rationales behind the improvement, finding that
more compact representations through margin-based contrastive learning bring improvement1.

4.1 Introduction
Many natural language classifiers are developed based on a closed-world assumption, i.e., the
training and test data are sampled from the same distribution. However, training data can rarely
capture the entire distribution. In real-world scenarios, out-of-distribution (OOD) instances, which
come from categories that are not known to the model, can often be present in inference phases.
These instances could be misclassified by the model into known categories with high confidence,
causing the semantic shift problem [129]. As a practical solution to this problem in real-world
applications, the model should detect such instances, and signal exceptions or transmit to models
handling other categories or tasks. Although pretrained Transformers [14] achieve remarkable
results when intrinsically evaluated on in-distribution (ID) data, recent work [1] shows that many of
these models fall short of detecting OOD instances.

Despite the importance, few attempts have been made for the problem of detecting OOD in NLP
tasks. One proposed method is to train a model on both the ID and OOD data and regularize the
model to produce lower confidence on OOD instances than ID ones [130, 131]. However, as the
OOD instances reside in an unbounded feature space, their distribution during inference is usually
unknown. Hence, it is hard to decide which OOD instances to use in training, let alone that they
may not be available in lots of scenarios. Another practiced method for OOD detection is to use the

1This chapter is based on Zhou, Liu & Chen [128].
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maximum class probability as an indicator [1, 132], such that lower values indicate more probable
OOD instances. Though easy to implement, its OOD detection performance is far from perfection,
as prior studies [133, 134] show that OOD inputs can often get high probabilities as well.

We aim at improving the OOD detection ability of natural language classifiers, in particular,
the pretrained Transformers, which have been the backbones of many SOTA NLP systems. For
practical purposes, we adopt the setting where only ID data are available during task-specific
training. Moreover, we require that the model should maintain classification performance on the ID
task data. To this end, we propose a contrastive learning framework for unsupervised OOD detection,
which is composed of a contrastive loss and an OOD scoring function. Our contrastive loss aims
at increasing the discrepancy of the representations of instances from different classes in the task.
During training, instances belonging to the same class are regarded as pseudo-ID data while those
of different classes are considered mutually pseudo-OOD data. We hypothesize that increasing
inter-class discrepancies can help the model learn discriminative features for ID/OOD distinctions,
and therefore help detect true OOD data at inference. We study two versions of the contrastive
loss: a similarity-based contrastive loss [135–137] and a margin-based contrastive loss. The OOD
scoring function maps the representations of instances to OOD detection scores, indicating the
likelihood of an instance being OOD. We examine different combinations of contrastive losses
and OOD scoring functions, including maximum softmax probability, energy score, Mahalanobis
distance, and maximum cosine similarity. Particularly, we observe that OOD scoring based on the
Mahalanobis distance [138], when incorporated with the margin-based contrastive loss, generally
leads to the best OOD detection performance. The Mahalanobis distance is computed from the
penultimate layer2 of Transformers by fitting a class-conditional multivariate Gaussian distribution.

The main contributions of this work are three-fold. First, we propose a contrastive learning
framework for unsupervised OOD detection, where we comprehensively study combinations of
different contrastive learning losses and OOD scoring functions. Second, extensive experiments
on various tasks and datasets demonstrate the significant improvement our method has made to
OOD detection for Transformers. Third, we provide a detailed analysis to reveal the importance of
different incorporated techniques, which also identifies further challenges for this emerging research
topic.

4.2 Related Work

Out-of-Distribution Detection. Determining whether an instance is OOD is critical for the safe
deployment of machine learning systems in the real world [139]. The main challenge is that the
distribution of OOD data is hard to estimate a priori. Based on the availability of OOD data, recent
methods can be categorized into supervised, self-supervised, and unsupervised ones. Supervised
methods train models on both ID and OOD data, where the models are expected to output a uniform
distribution over known classes on OOD data [130, 133, 140]. However, it is hard to assume the
presence of a large dataset that provides comprehensive coverage for OOD instances in practice.
Self-supervised methods [141] apply augmentation techniques to change certain properties of data
(e.g., through rotation of an image) and simultaneously learn an auxiliary model to predict the
property changes (e.g., the rotation angle). Such an auxiliary model is expected to have worse

2I.e., the input to the softmax layer.
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generalization on OOD data which can in turn be identified by a larger loss. However, it is hard to
define such transformations for natural language. Unsupervised methods use only ID data in training.
They detect OOD data based on the class probabilities [132, 134, 142, 143] or other latent space
metrics [138, 144]. Particularly, Vyas, Jammalamadaka, Zhu, Das, Kaul & Willke [145] randomly
split the training classes into two subsets and treat them as pseudo-ID and pseudo-OOD data,
respectively. They then train an OOD detector that requires the entropy of probability distribution
on pseudo-OOD data to be lower than pseudo-ID data. This process is repeated to obtain multiple
OOD detectors, and their ensemble is used to detect the OOD instances. This method conducts
OOD detection at the cost of high computational overhead in training redundant models and has the
limitation of not supporting the detection for binary classification tasks.

Though extensively studied for computer vision (CV), OOD detection has been overlooked in
NLP, and most prior works [130, 146, 147] require both ID and OOD data in training. Hendrycks,
Liu, Wallace, Dziedzic, Krishnan & Song [1] use the maximum softmax probability as the detection
score and show that pretrained Transformers exhibit better OOD detection performance than models
such as LSTM [38], while the performance is still imperfect. Our framework, as an unsupervised
OOD detection approach, significantly improves the OOD detection of Transformers only using ID
data.

Contrastive Learning. Recently, contrastive learning has received a lot of research attention. It
works by mapping instances of the same class into a nearby region and make instances of different
classes uniformly distributed [148]. Many efforts on CV [137, 149, 150] and NLP [151] incorporate
contrastive learning into self-supervised learning, which seeks to gather the representations of
different augmented views of the same instance and separate those of different instances. Prior work
on image classification [152, 153] shows that model trained with self-supervised contrastive learning
generates discriminative features for detecting distributional shifts. However, such methods heavily
rely on data augmentation of instances and are hard to be applied to NLP. Other efforts on CV [154]
and NLP [155] conduct contrastive learning in a supervised manner, which aims at embedding
instances of the same class closer and separating different classes. They show that models trained
with supervised contrastive learning exhibit better classification performance. To the best of our
knowledge, we are the first to introduce supervised contrastive learning to OOD detection. Such
a method does not rely on data augmentation, thus can be easily adapted to existing NLP models.
We also propose a margin-based contrastive objective that greatly outperforms standard supervised
contrastive losses.

4.3 Method
In this section, we first formally define the OOD detection problem (Section 4.3.1), then introduce
the overall framework (Section 4.3.2), and finally present the contrastive representation learning
and scoring functions (Section 4.3.3 and Section 4.3.4).

4.3.1 Problem Definition
We aim at improving the OOD detection performance of natural language classifiers that are
based on pretrained Transformers, using only ID data in the main-task training. Generally, the
out-of-distribution (OOD) instances can be defined as instances (xxx,y) sampled from an underlying
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distribution other than the training distribution P(Xtrain,Ytrain), where Xtrain and Ytrain are the
training corpus and training label set, respectively. In this context, literature further divides OOD
data into those with semantic shift or non-semantic shift [129]. Semantic shift refers to the instances
that do not belong to Ytrain. More specifically, instances with semantic shift may come from
unknown categories or irrelevant tasks. Therefore, the model is expected to detect and reject such
instances (or forward them to models handling other tasks), instead of mistakenly classifying them
into Ytrain. Non-semantic shift, on the other hand, refers to the instances that belong to Ytrain but
are sampled from a distribution other than Xtrain, e.g., a different corpus. Though drawn from
OOD, those instances can be classified into Ytrain, thus can be accepted by the model. Hence, in
the context of this thesis, we primarily consider an instance (xxx,y) to be OOD if y /∈ Ytrain, i.e.,
exhibiting semantic shift, to be consistent with the problem settings of prior studies [1, 138, 143].

We hereby formally define the OOD detection task. Specifically, given a main task of natural
language classification (e.g., sentence classification, NLI, etc.), for an instance xxx to be classified,
our goal is to develop an auxiliary OOD scoring function f (xxx) : X → R. This function should
return a low score for an ID instance where y ∈ Ytrain, and a high score for an OOD instance where
y /∈ Ytrain (y is the underlying label for xxx and is unknown at inference). During inference, we can set
a threshold for the OOD score to filter out most OOD instances. This process involves a trade-off
between false negative and false positive and may be specific to the application. Meanwhile, we
expect that the OOD detection auxiliary should not negatively affect the performance of the main
task on ID data.

4.3.2 Framework Overview
Next, we introduce the formation of our contrastive learning framework for OOD detection. We
decompose OOD detection into two steps. The first step is contrastive representation learning,
where we focus on learning a representation space H where the distribution of ID and that of OOD
data are distinct. Accordingly, we need another function to map the representation to an OOD score.
This process is equivalent to expressing OOD detection as f (xxx) = g(hhh), where hhh ∈ H is the dense
representation of the input text xxx given by an encoder, g : H →R is a scoring function mapping the
representation to an OOD detection score. Using this decomposition, we can use different training
strategies for hhh and different functions for g, which are studies in the following sections.

The learning process of our framework is described in Algorithm 2. In the training phase, our
framework takes training and validation datasets that are both ID as input. The model is optimized
with both the (main task) classification loss and the contrastive loss on batches sampled from
ID training data. The best model is selected based on the ID validation data. Specifically, for a
distribution-based OOD scoring function such as the Mahalanobis distance, we first need to fit the
OOD detector on the ID validation data. We then evaluate the trained model on the ID validation
data, where a satisfactory model should have a low contrastive loss and preserve the classification
performance. In the end, our framework returns a classifier to handle the main task on ID data and
an OOD detector to identify OOD instances at inference.

4.3.3 Contrastive Representation Learning
In this section, we discuss how to learn distinctive representations for OOD detection. For better
OOD detection performance, the representation space H is supposed to minimize the overlap of
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Algorithm 2: Learning Process
Input: ID training set Dtrain and ID validation set Dval.
Output: A trained classifier and an OOD detector.
Initialize the pretrained Transformer M.
for t = 1...T do

Sample a batch from Dtrain.
Calculate the classification loss Lce.
Calculate the contrastive loss Lcont as either Lscl or Lmargin
L = Lce + λLcont.
Update model parameters w.r.t. L .
if t % evaluation steps = 0 then

Fit the OOD detector on Dval.
Evaluate both the classifier and OOD detector on Dval.

Return the best model checkpoint.
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Figure 4.1: Illustration of our proposed contrastive loss. The contrastive loss seeks to increase
the discrepancy of the representations for instances from different training classes, such that OOD
instances from unknown classes can be better differentiated.

the representations of ID and OOD data. In a supervised setting where both ID and OOD data are
available in training, it would be easy to obtain such H . For example, Dhamija, Günther & Boult
[133] train the neural model on both ID and OOD data and require the magnitude of representations
of OOD instances to be smaller than ID representations. However, in real-world applications, the
distribution of OOD data is usually unknown beforehand. We thus tackle a more general problem
setting where the OOD data are assumed unavailable in training (unsupervised OOD detection,
introduced below).

In this unsupervised setup, though all training data used are ID, they may belong to different
classes. We leverage data of distinct classes to learn more discriminative features. Through a
contrastive learning objective, instances of the same class form compact clusters, while instances of
different classes are encouraged to live apart from each other beyond a certain margin, as illustrated
in Figure 4.1. The discriminative feature space is generalizable to OOD data, which ultimately leads
to better OOD detection performance in inference when encountering an unknown distribution. We
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realize such a strategy using two alternatives of contrastive losses, i.e., the supervised contrastive
loss and the margin-based contrastive loss.

Supervised Contrastive Loss. Different from the contrastive loss used in self-supervised represen-
tation learning [137, 150] that compares augmented instances to other instances, our contrastive
loss contrasts instances to those from different ID classes. To give a more specific illustration of our
technique, we first consider the supervised contrastive loss [154, 155]. Specifically, for a multi-class
classification problem with C classes, given a batch of training instances {(xxxi,yi)}M

i=1, where xxxi is
the input text, yi is the ground-truth label, the supervised contrastive loss can be formulated as:

Lscl =
M

∑
i=1

−1
M|P(i)| ∑

p∈P(i)
log

ezzz⊺i zzzp/τ

∑
a∈A(i)

ezzz⊺i zzza/τ
,

where A(i) = {1, ...,M}\{i} is the set of all anchor instances, P(i) = {p ∈ A(i) : yi = yp} is the
set of anchor instances from the same class as i, τ is a temperature hyper-parameter, zzz is the
L2-normalized [CLS] embedding before the softmax layer [154, 155]. The L2 normalization is for
avoiding huge values in the dot product, which may lead to unstable updates. In this case, this loss
is optimized to increase the cosine similarity of instance pairs if they are from the same class and
decrease it otherwise.

Margin-based Contrastive Loss. The supervised contrastive loss produces minimal gradients
when the similarity difference of positive and negative instances exceeds a certain point. However,
to better separate OOD instances, it is beneficial to enlarge the discrepancy between classes as much
as possible. Therefore, we propose another margin-based contrastive loss. It encourages the L2
distances of instances from the same class to be as small as possible, forming compact clusters,
and the L2 distances of instances from different classes to be larger than a margin. Our loss is
formulated as:

Lpos =
M

∑
i=1

1
|P(i)| ∑

p∈P(i)
∥hhhi −hhhp∥2,

Lneg =
M

∑
i=1

1
|N(i)| ∑

n∈N(i)
(ξ −∥hhhi −hhhn∥2)+,

Lmargin =
1

dM

(
Lpos +Lneg

)
.

Here N(i) = {n ∈ A(i) : yi ̸= yn} is the set of anchor instances from other classes than yi, hhh ∈ Rd

is the unnormalized [CLS] embedding before the softmax layer, ξ is a margin, d is the number of
dimensions of hhh. As we do not use OOD data in training, it is hard to properly tune the margin.
Hence, we further incorporate an adaptive margin. Intuitively, distances between instances from the
same class should be smaller than those from different classes. Therefore, we define the margin as
the maximum distance between pairs of instances from the same class in the batch:

ξ =
M

max
i=1

max
p∈P(i)

∥hhhi −hhhp∥2.
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We evaluate both contrastive losses in experiments. In training, the model is jointly optimized with
the cross-entropy classification loss Lce and the contrastive loss Lcont:

L = Lce +λLcont,

where λ is a positive coefficient. We tune λ based on the contrastive loss and the classification
performance on the ID validation set, where a selected value for λ should achieve a smaller
contrastive loss while maintaining the classification performance.

4.3.4 OOD Scoring Functions

Next, we introduce the modeling of the OOD scoring function g. The goal of the scoring function g
is to map the representations of instances to OOD detection scores, where higher scores indicate
higher likelihoods for being OOD. In the following, we describe several choices of this scoring
function.

Maximum Softmax Probability (MSP). Hendrycks & Gimpel [143] use the maximum class
probability 1−maxC

j=1 ppp j among C training classes in the softmax layer as an OOD indicator. This
method has been widely adopted as a baseline for OOD detection [1, 129, 141, 143].

Energy Score (Energy). Liu, Wang, Owens & Li [144] interpret the softmax function as the ratio
of the joint probability in X ×Y to the probability in X , and estimates the probability density of
inputs as:

g =− log
C

∑
j=1

exp(www⊺
j hhh),

where www j ∈ Rd is the weight of the jth class in the softmax layer, hhh is the input to the softmax layer.
A higher g means lower probability density in ID classes and thus implies higher OOD likelihood.

Mahalanobis Distance (Maha). Lee, Lee, Lee & Shin [138] model the ID features with class-
conditional multivariate Gaussian distributions. It first fits the Gaussian distributions on the ID
validation set Dval = {(xxxi,yi)}M

i=1 using the input representation hhh in the penultimate layer of model:

µµµ j = Eyi= j [hhhi] , j = 1, ...,C,

ΣΣΣ = E
[(

hhhi −µµµyi

)(
hhhi −µµµyi

)⊺]
,

where C is the number of classes, µµµ j is the mean vector of classes, and ΣΣΣ is a shared covariance
matrix of all classes. Then, given an instance xxx during inference, it calculates the OOD detection
score as the minimum Mahalanobis distance among the C classes:

g =−
C

min
j=1

(hhh−µµµ j)
⊺
ΣΣΣ
+(hhh−µµµ j),

where ΣΣΣ
+ is the pseudo-inverse of ΣΣΣ. The Mahalanobis distance calculates the probability density

of hhh in the Gaussian distribution.
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Cosine Similarity can also be incorporated to consider the angular similarity of input representations.
To do so, the scoring function returns the OOD score as the maximum cosine similarity of hhh to
instances of the ID validation set:

g =− M
max
i=1

cos(hhh,hhh(val)
i ).

The above OOD scoring functions, combined with options of contrastive losses, lead to different
variants of our framework. We evaluate each combination in experiments.

4.4 Experiments
This section presents experimental evaluations of the proposed OOD detection framework. We start
by describing experimental datasets and settings (Section 4.4.1 and 4.4.2), followed by detailed
results analysis and case studies (Section 4.4.3 to 4.4.5).

4.4.1 Datasets
Previous studies on OOD detection mostly focus on image classification, while few have been made
on natural language. Currently, there still lacks a well-established benchmark for OOD detection in
NLP. Therefore, we extend the selected datasets by Hendrycks, Liu, Wallace, Dziedzic, Krishnan &
Song [1] and propose a more extensive benchmark, where we use different pairs of NLP datasets as
ID and OOD data, respectively. The criterion for dataset selection is that the OOD instances should
not belong to ID classes. To ensure this, we refer to the label descriptions in datasets and manually
inspect samples of instances.

We use the following datasets as alternatives of ID data that correspond to three natural language
classification tasks:

• Sentiment Analysis. We include two datasets for this task. SST2 [156] and IMDB [157]
are both datasets for sentiment analysis, where the polarities of sentences are labeled either
positive or negative. For SST2, the train/validation/test splits are provided in the dataset. For
IMDB, we randomly sample 10% of the training instances as the validation set. Note that
both datasets belong to the same task and are not considered OOD to each other.

• Topic Classification. We use 20 Newsgroup [158], a dataset for topic classification con-
taining 20 classes. We randomly divide the whole dataset into an 80/10/10 split as the
train/validation/test set.

• Question Classification. TREC-10 [159] classifies questions based on the types of their
sought-after answers. We use its coarse version with 6 classes and randomly sample 10% of
the training instances as the validation set.

Moreover, for the above three tasks, any pair of datasets for different tasks can be regarded as
OOD to each other. Besides, following Hendrycks, Liu, Wallace, Dziedzic, Krishnan & Song [1],
we also select four additional datasets solely as the OOD data: concatenations of the premises and
respective hypotheses from two NLI datasets RTE [160–163] and MNLI [164], the English source
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Dataset # train # dev # test # class

SST2 67349 872 1821 2
IMDB 22500 2500 25000 2
TREC-10 4907 545 500 6
20NG 15056 1876 1896 20

MNLI - - 19643 -
RTE - - 3000 -
Multi30K - - 2532 -
WMT16 - - 2999 -

Table 4.1: Statistics of the datasets.

AUROC ↑ / FAR95 ↓ Avg SST2 IMDB TREC-10 20NG

w
/o

L
co

nt MSP 94.1 / 35.0 88.9 / 61.3 94.7 / 40.6 98.1 / 7.6 94.6 / 30.5
Energy 94.0 / 34.7 87.7 / 63.2 93.9 / 49.5 98.0 / 10.4 96.5 / 15.8
Maha 98.5 / 7.3 96.9 / 18.3 99.8 / 0.7 99.0 / 2.7 98.3 / 7.3
Cosine 98.2 / 9.7 96.2 / 23.6 99.4 / 2.1 99.2 / 2.3 97.8 / 10.7

w
/L

sc
l Lscl + MSP 90.4 / 46.3 89.7 / 59.9 93.5 / 48.6 90.2 / 36.4 88.1 / 39.2

Lscl + Energy 90.5 / 43.5 88.5 / 64.7 92.8 / 50.4 90.3 / 32.2 90.2 / 26.8
Lscl + Maha 98.3 / 10.5 96.4 / 26.6 99.6 / 2.0 99.2 / 1.9 97.9 / 11.6
Lscl + Cosine 97.7 / 13.0 95.9 / 28.2 99.2 / 4.2 99.0 / 2.4 96.8 / 17.0

w
/L

m
ar

gi
n Lmargin + MSP 93.0 / 33.7 89.7 / 49.2 93.9 / 46.3 97.6 / 6.5 90.9 / 32.6

Lmargin + Energy 93.9 / 31.0 89.6 / 48.8 93.4 / 52.1 98.4 / 4.6 94.1 / 18.6
Lmargin + Maha 99.5 / 1.7 99.9 / 0.6 100 / 0 99.3 / 0.4 98.9 / 6.0
Lmargin + Cosine 99.0 / 3.8 99.6 / 1.7 99.9 / 0.2 99.0 / 1.5 97.4 / 11.8

Table 4.2: OOD detection performance (in %) of RoBERTaLARGE trained on the four ID datasets.
Due to space limits, for each of the four training ID dataset, we report the macro average of AUROC
and FAR95 on all OOD datasets (check Appendix for full results). Results where the contrastive loss
improves OOD detection on both evaluation metrics are highlighted in green .“w/o Lcont+MSP”
thereof is the method in Hendrycks, Liu, Wallace, Dziedzic, Krishnan & Song [1].

side of Machine Translation (MT) datasets English-German WMT16 [165] and Multi30K [166].
We take the test splits in those datasets as OOD instances in testing. Particularly, for MNLI, we
use both the matched and mismatched test sets. For Multi30K, we use the union of the flickr 2016
English test set, mscoco 2017 English test set, and filckr 2018 English test set as the test set. There
are several reasons for not using them as ID data: (1) WMT16 and Multi30K are MT datasets and
do not apply to a natural language classification problem. Therefore, we cannot train a classifier on
these two datasets. (2) The instances in NLI datasets are labeled either as entailment/non-entailment
for RTE or entailment/neural/contradiction for MNLI, which comprehensively covers all possible
relationships of two sentences. Therefore, it is hard to determine OOD instances for NLI datasets.
The statistics of the datasets are shown in Table 4.1.
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Figure 4.2: Visualization of the representations for positive, negative instances in SST2 and OOD
ones. The discrepancy between ID and OOD representations is greater on representations obtained
with Lmargin.

4.4.2 Experimental Settings

Evaluation Protocol. We train the model on the training split of each of the four aforementioned
ID datasets in turn. In the inference phase, the respective test split of that dataset is used as ID test
data, while all the test splits of datasets from other tasks are treated as OOD test data.

We adopt two metrics that are commonly used for measuring OOD detection performance
in machine learning research [138, 143]: (1) AUROC is the area under the receiver operating
characteristic curve, which plots the true positive rate (TPR) against the false positive rate (FPR). A
higher AUROC value indicates better OOD detection performance, and a random guessing detector
corresponds to an AUROC of 50%. (2) FAR95 is the probability for a negative example (OOD)
to be mistakenly classified as positive (ID) when the TPR is 95%, in which case a lower value
indicates better performance. Both metrics are threshold-independent.

Compared Methods. We evaluate all configurations of contrastive losses and OOD scoring
functions. Those include 12 settings composed of 3 alternative setups for contrastive losses (Lscl,
Lmargin or w/o a contrastive loss) and 4 alternatives of OOD scoring functions (MSP, the energy
score, Maha, or cosine similarity).

Model Configuration. We implement our framework upon Huggingface’s Transformers [167]
and build the text classifier based on RoBERTaLARGE [46] in the main experiment. All models are
optimized with Adam [100] using a learning rate of 1e−5, with a linear learning rate decay towards
0. We use a batch size of 32 and fine-tune the model for 10 epochs. When training the model on
each training split of a dataset, we use the respective validation split for both hyper-parameter tuning
and The hyper-parameters are tuned according to the classification performance and the contrastive
loss on the ID validation set. We find that τ = 0.3 and λ = 2 work well with Lscl, while λ = 2
work well with Lmargin, and we apply them to all datasets.

4.4.3 Main Results

We hereby discuss the main results of the OOD detection performance. Note that the incorporation
of our OOD techniques does not lead to noticeable interference of the main-task performance, for
which an analysis is later given in Section 4.4.5.
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AUROC ↑ / FAR95 ↓ TREC-10 20NG

MSP 73.7 / 56.5 76.4 / 80.7
Maha 75.5 / 56.1 77.2 / 74.1
Lmargin + MSP 64.1 / 66.4 74.6 / 82.0
Lmargin + Maha 76.6 / 61.3 78.5 / 72.7

Table 4.3: Novel class detection performance.

The OOD detection results by different configurations of models are given in Table 4.2. For all
results, we report the average of 5 runs using different random seeds. Each model configuration is
reported with separate sets of results when being trained on different datasets, on top of which the
macro average performance is also reported. For settings with Lscl and Lmargin, results better than
the baselines (w/o a contrastive loss) are marked as red. We observe that: (1) Among OOD detection
functions, the Mahalanobis distance performs the best on average and drastically outperforms the
MSP baseline used in Hendrycks, Liu, Wallace, Dziedzic, Krishnan & Song [1]. This is due to that
the Mahalanobis distance can better capture the distributional difference. (2) Considering models
trained on different ID datasets, the model variants with Lmargin have achieved near-perfect OOD
detection performance on SST2, IMDB, and TREC-10. While on the 20 Newsgroup dataset that
contains articles from multiple genres, there is still room for improvement. (3) Overall, The margin-
based contrastive loss (Lmargin) significantly improves OOD detection performance. Particularly, it
performs the best with the Mahalanobis distance, reducing the average FAR95 of Maha by 77%
from 7.3% to 1.7%. (4) The supervised contrastive loss (Lscl) does not effectively improve OOD
detection in general. In many cases, its performance is even worse than the baseline.

4.4.4 Novel Class Detection

We further evaluate our framework in a more challenging setting of novel class detection. Given
a dataset containing multiple classes (≥ 3), We randomly reserve one class as OOD data while
treating others as ID data. We then train the model on the ID data and require it to identify OOD data
in inference. In this case, the OOD data are sampled from the same task corpus as the ID data, and
thus is much harder to be distinguished. We report the average performance of 5 trials in Table 4.3.
The results are consistent with the main results in general. The Mahalanobis distance consistently
outperforms consistently outperforms MSP, and the Lmargin achieves better performance except for
the FAR95 metric on the TREC-10 dataset. However, the performance gain is notably smaller than
that in the main experiments. Moreover, none of the compared methods achieve an AUROC score
of over 80%. This experiment shows that compared to detecting OOD instances from other tasks,
detecting OOD instances from similar corpora is much more challenging and remains room for
further investigation.

4.4.5 Analysis

Visualization of Representations. To help understand the increased OOD detection performance of
our method, we visualize the penultimate layer of the Transformer trained with different contrastive
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Accuracy SST2 IMDB TREC-10 20NG

w/o Lcont 96.4 95.3 97.7 93.6
w/ Lscl 96.3 95.3 97.4 93.4
w/ Lmargin 96.3 95.3 97.5 93.9

Table 4.4: Accuracy of the trained classifier.

AUROC ↑ / FAR95 ↓ L1 Cosine L2

MSP 93.6 / 31.1 94.1 / 30.9 92.2 / 32.0
Energy 93.8 / 27.2 94.7 / 26.9 94.4 / 27.5
Maha 99.3 / 2.8 99.2 / 3.0 99.4 / 1.7
Cosine 98.1 / 10.9 98.8 / 5.3 99.0 / 3.9

Table 4.5: Average OOD detection performance of different distance metrics.

AUROC ↑ / FAR95 ↓ Maha Maha + Lmargin

BERTBASE 95.7 / 21.5 98.4 / 8.1
BERTLARGE 97.7 / 13.3 99.1 / 3.9
RoBERTaBASE 98.4 / 9.3 99.6 / 2.0
RoBERTaLARGE 98.5 / 7.3 99.4 / 1.7

Table 4.6: Average OOD detection performance of other pretrained Transformers.

losses. Specifically, we train the model on SST2 and visualize instances from the SST2 validation set
and OOD datasets using t-SNE [168], as shown in Figure 4.2. We observe that the representations
obtained with Lmargin can distinctly separate ID and OOD instances, such that ID and OOD clusters
see almost no overlap.

Main Task Performance. As stated in Section 4.3.1, the increased OOD detection performance
should not interfere with the classification performance on the main task. We evaluate the trained
classifier on the four ID datasets. The results are shown in Table 4.4. We observe that the
contrastive loss does not noticeably decrease the classification performance, nor does it increase the
performance, which differs from the observations by Gunel, Du, Conneau & Stoyanov [155].

Distance Metrics. Besides L2 distance, we further evaluate the L1 distance and the cosine distance
with the margin-based contrastive loss Lmargin. Results are shown in Table 4.5. Due to space
limitations, we only report the average OOD performance on the four ID datasets. We observe that
the three metrics achieve similar performance, and all outperform the baseline when using Maha as
the scoring function. Among them, L2 distance gets slightly better OOD detection performance.
Moreover, Lmargin significantly outperforms Lscl when both use cosine as the distance metric. It
shows that their performance difference arises from the characteristics of the losses instead of the
metric.

OOD Detection by Other Transformers. We also evaluate the OOD detection ability of other
pretrained Transformers in Table 4.6 and report the average performance on the four ID datasets.
For BERT [14], we use λ = 0.2. We observe that: (1) Larger models have better OOD detection
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ability. For both BERT and RoBERTa, the large versions offer better results than the base versions.
(2) Pretraining on diverse data improves OOD detection. RoBERTa, which uses more pretraining
corpora, outperforms BERT models. (3) The margin-based contrastive loss consistently improves
OOD detection on all encoders.

4.5 Conclusion
This work presents an unsupervised OOD detection framework for pretrained Transformers requir-
ing only ID data. We systematically investigate the combination of contrastive losses and scoring
functions, the two key components in our framework. In particular, we propose a margin-based
contrastive objective for learning compact representations, which, in combination with the Maha-
lanobis distance, achieves the best performance: near-perfect OOD detection on various tasks and
datasets. We further propose novel class detection as the future challenge for OOD detection.
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Chapter 5

Resolving Knowledge Conflicts

Large language models (LLMs) encode parametric knowledge about world facts and have shown
remarkable performance in knowledge-driven NLP tasks. However, their reliance on parametric
knowledge may cause them to overlook contextual cues, leading to incorrect predictions in context-
sensitive NLP tasks (e.g., knowledge acquisition tasks). We seek to assess and enhance LLMs’
contextual faithfulness in two aspects: knowledge conflict and prediction with abstention. We
demonstrate that LLMs’ faithfulness can be significantly improved using carefully designed prompt-
ing strategies. In particular, we identify opinion-based prompts and counterfactual demonstrations
as the most effective methods. Opinion-based prompts reframe the context as a narrator’s state-
ment and inquire about the narrator’s opinions, while counterfactual demonstrations use instances
containing false facts to improve faithfulness in knowledge conflict situations. Neither technique
requires additional training. We conduct experiments on three datasets of two standard NLP tasks,
machine reading comprehension and relation extraction, and the results demonstrate significant
improvement in faithfulness to contexts1.

5.1 Introduction
Large language models (LLMs; [170–173]) have made remarkable advances in solving various NLP
problems, particularly in (context-free) knowledge-driven tasks such as question answering [174,
175] and commonsense reasoning [176, 177]. Without external context, LLMs can answer factual
questions and achieve comparable results to supervised approaches [170, 171], indicating that LLMs
encode parametric knowledge about open-world facts.

Although parametric knowledge can be beneficial for knowledge-driven tasks, overly relying on
it can cause problems in context-specific NLP tasks. First, LLMs may encode misconceptions [178]
or obsolete facts [179–181], in which case we expect LLMs to update their predictions when
provided with relevant context. Second, when using LLMs for knowledge acquisition tasks such
as machine reading comprehension (MRC; [182, 183]) and information extraction (IE; [20, 85]),
LLMs should always extract the knowledge in context instead of relying solely on their parametric
knowledge. In such context-specific application scenarios, we expect LLMs to make decisions
faithful to the context and avoid simply parroting answers from pretraining. However, studies have
discovered that LLMs can overlook or ignore context [181, 184, 185], posing a significant challenge
for their application in these scenarios.

1This chapter is based on Zhou, Zhang, Poon & Chen [169].
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Context: Elon Musk is a business magnate and 
investor. He is the owner and CEO of Twitter.
Question: Who is the CEO of Twitter?
Answer: Elon Musk
GPT-3.5: Jack Dorsey

Knowledge Conflict

Context: Bill Gates was born in Seattle, 
Washington.
Question: Is Bill Gates the founder of Microsoft?
Answer: I don’t know
GPT-3.5: yes

Prediction with Abstention

Figure 5.1: Examples of knowledge conflict and prediction with abstention. LLMs may ignore the
provided context and make unfaithful predictions based on their parametric knowledge before Q4
2021.

We aim to investigate techniques for improving the faithfulness of LLMs in context-specific
NLP tasks. Conceptually, faithfulness is not simply about how much accuracy the model can
offer. Instead, it should concern the validity and reliability of its extraction process. Specifically,
when there is a concept or relation to extract, a faithful extractor should genuinely induce what is
described in the context but not give trivial guesses based on parametric knowledge or statistical
biases. Besides, when no known decision-related information is described in the context, the
model should selectively abstain from predicting. Accordingly, to provide a realistic assessment
of LLMs in terms of faithfulness, we narrow our focus to two sub-problems, namely entity-based
knowledge conflict [186] and prediction with abstention [187], examples of which are shown
in Figure 5.1. In cases of knowledge conflict, where the given context contains facts different from
the pretraining data, LLMs need to return the facts locally described in the context instead of the
globally memorized facts. For example, in Figure 5.1, text-davinci-003 identifies Jack Dorsey
instead of Elon Musk as the CEO of Twitter, based on its pretrained data before Q4 2021. In cases of
prediction with abstention, where the provided context does not provide information to answer the
questions, LLMs should abstain from making predictions and notify the users, rather than answering
the questions that become a trivial guess. For example, in Figure 5.1, when asked about the founder
of Microsoft based on an irrelevant context, LLMs should admit that, from here, they cannot infer
the answer.

We present various prompting strategies to improve the faithfulness of LLMs, including design-
ing effective prompts and choosing appropriate in-context demonstrations. We find that constraining
the scope of questions to the context by adding phrases (e.g., based on the given context) or natural
language instructions improve faithfulness in both facets. Particularly, we find that reformulating
the context and questions to opinion-based question-answering problems [188, 189], where the
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context is expressed in terms of a narrator’s statement, and the question asks about this narrator’s
opinion, delivers the most gains. Additionally, we find that adding counterfactual demonstrations to
prompts improves faithfulness in the aspect of knowledge conflict, while using the original (factual)
demonstrations leads to limited or negative effects. Finally, combining both techniques delivers the
largest gain than using each one independently.

We evaluate our methods based on three datasets, including Re-TACRED [190] for relation
extraction, and natural questions [175] and RealTime QA [181] for MRC. We find that the proposed
strategies can greatly improve faithfulness, e.g., reducing the memorization ratio2 of text-davinci-
003 from 35.2% to 3.0% on natural questions. Additionally, we evaluate our methods across LLMs
of different scales, finding that larger LLMs are more likely to update memorized answers than
smaller ones, both with and without the application of our methods.

5.2 Related Work

Knowledge conflicts. LLMs [170–172] have shown promising results in closed-book QA tasks,
indicating their ability to memorize facts about the world. However, as the world is constantly
evolving, memorized facts may become outdated [179–181, 191–194], emphasizing the need to
update LLMs’ predictions with new facts. To address this challenge, some studies [195–199] have
explored ways to identify and edit the facts stored in model parameters. For example, Meng, Sharma,
Andonian, Belinkov & Bau [199] identify the MLPs that have a causal effect on factual knowledge
recall in LLMs and edit the parameters in these critical MLPs to update the knowledge. Their
method can update up to thousands of memorized facts with little impairment to others. However,
it remains unclear whether memory editing methods allow sufficient capacity to encompass all
new factual knowledge. Another promising direction is to augment LLM prompting with external
context containing relevant knowledge [200–202]. Coupled with retrieval systems [203–205],
such methods have the potential to update LLMs with large amounts of new facts. However,
such methods face the challenge that LLMs may persist with the memorized facts and ignore
the provided context [186]. To tackle this challenge, recent works [184, 206] finetune LLMs on
counterfactual contexts, where the original facts are replaced with counterfactual ones. They find
that such finetuning processes can effectively improve the LLMs’ utilization of contexts instead
of relying solely on their parametric knowledge. In this study, we propose a novel approach using
prompting to improve context faithfulness in LLMs without additional finetuning, which offers a
more general and cost-effective method for LLMs.

Prediction with abstention. Selective prediction with abstention [207–210] is an important problem
in trustworthy AI. When models are uncertain about their predictions, it is critical that they should
admit the uncertainty and notify users instead of returning incorrect predictions. Selective prediction
may be adopted in different scenarios, such as being on the model side where instances are close to
the decision boundary [211–213], or on the data side where instances are from different domains
to training [1, 128, 143]. In the scope of context-specific NLP, abstention is preferred when the
context is irrelevant to the question. For example, SQuAD 2.0 [187] introduces unanswerable
questions to extractive MRC, while Yatskar [214] finds it focused on questions of extreme confusion
and thus is less relevant to the focus of our study. CoQA [215] and QuAC [216] introduce

2The percentage of times that LLMs return memorized answers versus answers in the context.
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unanswerable questions to conversational question answering. RealTime QA [181] finds that
GPT-3 still generates outdated answers when provided with irrelevant documents. To address the
problem, Neeman, Aharoni, Honovich, Choshen, Szpektor & Abend [206] propose the answerability
augmentation where LLMs should predict Unanswerable when presented with an empty or randomly
sampled document. We tackle this problem with a part of our prompting method, which we find to
significantly enhance the LLMs’ ability to make selective predictions.

5.3 Method
We focus on context-specific NLP tasks. The input of these tasks is formulated as (c,q) for free-form
generation tasks, where c is the context and q is the question, or (c,q,o) for tasks with close decision
spaces (e.g., multi-choice tasks), where o is the set of decisions/choices. The desired output is
either a free-form text or a choice. We solve these tasks by prompting LLMs and study ways of
designing prompting templates and demonstrations that are dedicated to improving the faithfulness
of LLMs. Specifically, we find two proposed methods, opinion-based prompts and counterfactual
demonstrations, to be the most effective ones. Our methods only change the prompts without
finetuning the LLMs [184, 186, 206], targeting a more general and affordable solution.

5.3.1 Opinion-based Prompting
Given an input (c,q,o), we begin with the following base prompting template:3

Base prompt

{c} Q: {q}? Options: {o} A:

Here, {} serves as a placeholder that is filled with specific inputs during prompting. We
investigate two types of prompting templates for context-specific NLP, namely opinion-based
prompts and instructed prompts. Opinion-based prompts transform original questions into opinion-
seeking questions, which naturally demand more attention to the context. Instructed prompts, on
the other hand, explicitly instruct LLMs to read the context by natural language. Details of these
templates are discussed in the remaining section.
Opinion-based prompts. We propose to transform the context to a narrator’s statement and the
question to enquire about the narrator’s opinion in this statement. Our approach is motivated by our
own cognitive process for answering different types of questions. When answering questions that
seek factual information, we can often rely on our own memory and answer without needing to refer
to the context, as these questions typically have only one correct answer. However, when questions
are seeking opinions from someone else (in this context, the narrator), it is important to comprehend
the narrator’s words before answering the questions, as opinions may vary greatly from person to
person. Besides, as opinions are inherently subjective and can be influenced by many factors such as
personal experiences and beliefs, opinion-seeking questions are sometimes difficult to answer solely
based on the narrator’s statement compared to a fact-seeking question that typically has definite and
verifiable answer(s). As a result, transforming factual questions into opinion-seeking questions can

3Options only apply for multiple-choice tasks and are removed in free-form text generation tasks.
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lead to more attention to the context, as memorized answers alone may not suffice. It also helps the
model more selectively predict under cases where contexts do not describe answers. Both factors
lead to improved faithfulness on LLMs. The opinion-based prompting template is as follows:

Opinion-based prompt

Bob said, ”{c}” Q: {q} in Bob’s opinion? Options: {o} A:

Throughout our experiments, we consistently use Bob to represent the narrator for the context,
although other names could be utilized as well.

Instructed prompts. We also explicitly instruct LLMs to read context by natural language. We
start by extending questions in prompts with attributive phrases such as “based on the given text”,
leading to the following attributed prompting template:

Attributed prompt

{c} Q: {q} based on the given text? Options:{o} A:

We also augment the prompts with natural language instructions. Since manually writing
instructions can be laborious and often fails to account for the compatibility between instructions
and LLMs, we leverage automatic prompt engineering (APE; [217]) to generate the prompts. Using
a few instances and their desired outputs as demonstrations, APE uses LLMs to automatically
generate candidate instructions and select the best one based on the results on a dev set. We then
use the following instruction-based prompting template:

Instruction-based prompt

Instruction: {Instruction} {c} Q: {q}? Options: {o} A:

Experiments show that all prompting templates perform better than the base prompting template.
Specifically, opinion-based prompts outperform instructed prompts in both knowledge conflict and
prediction with abstention facets, and combining these two prompting methods results in the most
significant improvements.

5.3.2 Counterfactual Demonstration

Using demonstrations is a standard way to perform few-shot inference on LLMs [170]. To enhance
the faithfulness of LLMs in knowledge conflict scenarios, previous works [184, 206] propose to
finetune the models using counterfactual instances, where the facts in the context are substituted
with false ones, and the model learns to update its predictions accordingly. Following this strategy,
we propose to use counterfactual instances as demonstrations for LLMs. To do this, we start with
a labeled set of counterfactual instances and a test instance and then use KATE [218] to retrieve
the most relevant counterfactual instances as demonstrations. We encode both the test instance and
counterfactual instances with RoBERTanli+sts-b [46, 219] and select the top counterfactual instances
based on cosine similarity. As a part of our analysis, we also experimented with using the original
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Method
MRC RE

ps ↑ po ↓ MR ↓ EM↑ ps ↑ po ↓ MR ↓ F1↑

Z
er

o-
sh

ot
Base 59.0 32.1 35.2 6.2 73.9 21.5 22.5 81.0
Attr 71.9 14.4 16.6 29.6 72.4 23.6 24.6 80.0
Instr 74.2 16.0 17.7 27.1 75.8 15.6 17.1 81.6
Opin 79.4 9.8 11.0 24.9 76.0 19.6 20.5 82.9
Opin + Instr 79.1 7.9 9.1 48.6 79.4 15.0 15.9 84.7

O
ri

gi
na

l

Base 43.3 49.4 53.3 35.1 76.2 19.8 20.6 83.3
Attr 54.1 37.7 41.0 45.5 76.5 19.7 20.5 83.7
Instr 54.6 37.7 40.8 45.8 77.3 18.4 19.2 84.2
Opin 60.6 28.7 32.1 51.1 76.8 18.4 19.3 83.8
Opin + Instr 64.7 26.8 29.3 53.8 78.2 17.1 17.9 84.9

C
ou

nt
er

Base 86.9 6.5 7.0 80.2 78.7 13.7 14.8 83.9
Attr 89.1 4.6 4.9 83.0 79.7 13.0 14.0 84.3
Instr 86.2 6.3 6.8 80.1 78.0 12.8 14.1 82.9
Opin 90.1 3.7 3.9 84.3 79.7 12.8 13.8 84.4
Opin + Instr 90.9 2.8 3.0 85.2 80.0 10.5 11.6 85.1

Table 5.1: Results (in %) in the knowledge conflict setting. The overall best results are highlighted
in bold. The best and the second best results in each setting are highlighted in green and orange ,
respectively.

(factual) instances as demonstrations but found this approach to underperform counterfactual
demonstrations and sometimes even zero-shot inference.

5.4 Experiments

This section presents our experimental setups (Section 5.4.1) for the evaluation of the proposed
methods concerning two aspects of faithfulness: knowledge conflict (Section 5.4.2) and prediction
with abstention (Section 5.4.3). We provide additional analysis (Section 5.4.4) on results across
different model sizes and results on the original datasets. We also show examples of prompts and
LLMs’ outputs in the case study (Section 5.4.5).

5.4.1 Experimental Setup

Our experiments are conducted using the InstructGPT model (text-davinci-003, 175B parameters).
We use the base prompt as our baseline, and compare it against the proposed prompting templates
in Section 5.3.1, including attributed prompt (ATTR), instruction-based prompt (INSTR), opinion-
based prompt (OPIN), and the combination of opinion-based prompt and instruction-based prompt
(OPIN + INSTR). We evaluate the effectiveness of these templates in both zero-shot and few-shot
settings (with demonstrations).
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5.4.2 Knowledge Conflict

Datasets. We evaluate in the knowledge conflict setting using counterfactual datasets that contain
incorrect facts, which can conflict with what the LLM has memorized. We use two datasets
based on real-world texts: natural questions [175] for MRC and Re-TACRED [190] for relation
extraction (RE). To create counterfactuals, we adopt the framework proposed by Longpre, Perisetla,
Chen, Ramesh, DuBois & Singh [186], which modifies the context to support a counterfactual
answer. Specifically, for MRC, we follow Longpre, Perisetla, Chen, Ramesh, DuBois & Singh [186]
and replace the gold entity answer in the context with a randomly sampled entity of the same entity
type from the corpus. For RE, we first randomly sample a context that has the entity mentions of
the same type but different relations from the original one, and then insert the original entities into
the sampled context. In this scenario, a faithful LLM should update its prediction to the new answer
instead of returning the original one. Moreover, to measure LLMs’ ability to update answers, we
need to ensure that they have knowledge of the original answers in the first place. Therefore, we
only evaluate LLMs on a subset of instances where they can correctly predict the original answers
without additional contexts. This process left us with 2,773 test instances on natural questions and
4,353 test instances on Re-TACRED.
Task setup. We use the same set of evaluation metrics as Longpre, Perisetla, Chen, Ramesh, DuBois
& Singh [186]. Specifically, we measure the frequency that the LLMs’ predictions contain an
exact match of the original answers (po) and the substituted answers (ps), after both predictions
and answers have been normalized by removing stop words and punctuation To assess the model’s
reluctance to update its prediction, we use the memorization ratio (MR), which is calculated as
MR = po

po+ps
. A completely faithful LLM should have an MR of 0. We also report task-specific

metrics, including exact match (EM) for MRC and F1 for RE. For EM, we also use normalized
predictions and answers, but the requirement is that the prediction and answer must be exactly the
same, rather than just containing the answer. We conduct experiments in three different settings:
zero-shot, demonstration using original instances, and demonstration using counterfactual instances.
We retrieve demonstrations from the original/counterfactual training set, and evaluate LLMs on
the counterfactual test set. In the few-shot setting, we use 16 demonstration instances. Since
text-davinci-003 has a maximum input length of 4,096 tokens, some instances are filtered out during
evaluation.
Results and discussion. The results in Table 5.1 demonstrate that the combination of OPIN +
INSTR prompting and counterfactual demonstrations is most effective. It results in a reduction
of 32.2% and 10.9% in MR for MRC and RE respectively when compared to the zero-shot base
prompts. We also find that opinion-based prompts generally perform better than other templates,
achieving the second-best results on 17 out of 24 metrics, indicating that LLMs are more faithful
to the context when answering opinion-seeking questions. Combining opinion-based prompts and
instruction-based prompts further improves faithfulness, with the best results obtained in 23 out of
24 metrics.

When it comes to few-shot settings, counterfactual demonstrations lead to further improved
performance. Using the original (factual) instances as demonstrations, on the other hand, leads to
limited effects or may even impair faithfulness in MRC. This finding suggests that demonstrations
do not always improve the generalization of LLMs’ inference, especially when they contain dataset
bias. In the MRC experiments, the natural questions dataset used is constructed based on Wikipedia,
which mainly consists of world facts. This potentially allows for a simplicity bias of LLMs where
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Method
Acc↑ Brier↓

NoAns All All

Z
er

o-
sh

ot

Base 30.6 68.5 29.4
Attr 65.3 84.4 14.6
Instr 81.6 91.7 7.7
Opin 83.3 92.6 6.6
Opin + Instr 87.8 94.4 5.2

Fe
w

-s
ho

t
Base 73.5 88.2 11.2
Attr 81.6 91.9 8.0
Instr 85.7 93.7 6.1
Opin 87.8 94.6 4.1
Opin + Instr 89.8 95.5 3.4

Table 5.2: Results (in %) on RealTime QA. The overall best results are highlighted in bold. The
best and the second best results in each setting are highlighted in green and orange , respectively.
As all prompts achieve perfect accuracy (100%) on the HasAns subset, it is not included in the
table.

questions can be answered without contexts. Therefore, our study suggests the importance of using
counterfactual demonstrations in knowledge conflict scenarios.

5.4.3 Prediction with Abstention

Datasets. As for the second aspect of faithfulness, we evaluate LLMs’ ability to selectively abstain
from making uncertain predictions based on irrelevant context. Since existing datasets such as
SQuAD 2.0 [187] generally contain questions with confusion [214] and are less related to our
problem setting, we curate our own evaluation data based on RealTime QA [181], a dataset that
inquires about novel information from June 2022 onwards. In this formulation, LLMs are presented
with a question and multiple choices, and they need to choose the correct answer based on several
retrieved documents. These documents were obtained using tools like Google custom search and
may not contain the answer to the question. To adapt this dataset to our setting, we added a new
“I don’t know” choice and relabeled the dataset. Instances where the retrieved documents do not
answer the question are relabeled to “I don’t know”. We used questions in the first six weeks of 2022
as the test set and randomly picked three questions of 2023 as demonstration instances. This process
results in a total of 113 test instances, including 63 answerable questions and 50 unanswerable ones.
Task setup. We calculate the probability of a choice as P(choice|prompt) followed by normalization
across all choices.4 We take the choice with the largest probability as the prediction. We report
accuracy on the entire dataset (All), accuracy on the subset of questions that can be answered based
on retrieved documents (HasAns), and accuracy on questions that cannot be answered based on
retrieved documents (NoAns). The latter two metrics measure LLMs’ ability to extract answers
from context and their ability to abstain from making predictions when the context does not describe

4We tried to scale the probability of choices for length or unconditional probability as done in Brown, Mann, Ryder,
Subbiah, Kaplan, Dhariwal, et al. [170], whereas we find both lead to worse results on RealTime QA.
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the answer, respectively. Besides, we use the probability of “I don’t know” as LLM’s probability
estimation of whether the question can be answered. We use the Brier score to evaluate the accuracy
of the estimation, which measures the mean squared difference between the estimation and the true
binary outcome of answerability. We use three demonstrations for each instance in the few-shot
setting. As text-davinci-003 has a maximum input length of 4,096 tokens, some instances are
filtered out during evaluation.

Results and discussion. The results presented in Table 5.2 demonstrate that the OPIN + INSTR

prompt achieves the best results in both the zero-shot and few-shot settings, outperforming base
prompts by 57.2% and 16.3% in accuracy in the NoAns subset, respectively. It also reduces the Brier
score by 24.2% and 7.8% compared to base prompts in the two settings, respectively. The OPIN

prompt is the second best in terms of these metrics. These findings demonstrate that opinion-based
prompts can enhance the LLMs’ ability to make selective predictions. Furthermore, all proposed
prompting templates achieve better results on NoAns instances compared to base prompts, and
maintain perfect accuracy on HasAns subset, indicating their ability to improve LLMs’ selective
prediction without compromising performance on answerable instances. In addition, The use of
demonstrations consistently improves the LLMs’ ability to make selective predictions, as evidenced
by the lower Brier scores in the few-shot setting compared to the zero-shot setting.

5.4.4 Additional Analysis

Memorization by different sizes of LLMs. Figure 5.2 shows the memorization ratio MR across
different sizes of InstructGPTs under the zero-shot evaluation of natural questions.5 Overall, OPIN

+ INSTR consistently outperforms other prompts across different model sizes. In the upper plot,
results are shown for filtered evaluation sets where the corresponding LLMs can correctly predict
the original answers without additional contexts, thereof the size of evaluation sets varies across
different LLMs.6 We observe that MR generally decreases with increased model size, showing
that larger LLMs are better at updating memorized answers based on given contexts in knowledge
conflicts. However, the lower plot reveals that larger LLMs have more severe memorization on
the full (unfiltered) evaluation set. This is because larger LLMs can memorize more answers
than smaller ones, as evidenced by the number of instances in the filtered evaluation set where
larger LLMs have more instances. Our analysis suggests that while larger LLMs are better at
updating memorized answers, they still tend to have more memorization due to the larger number of
memorized answers. Therefore, we need to pay more attention when using larger LLMs in scenarios
with new or potentially conflicting knowledge.

Selective prediction by different sizes of LLMs. Figure 5.3 shows the Brier score across different
sizes of InstructGPTs under the zero-shot evaluation of RealTime QA. On smaller LLMs, opinion-
based prompt achieves similar or even higher Brier score than base prompts, indicating it does
not improve the selective prediction ability of LLMs. We hypothesize that this is because smaller
LLMs have inferior reading comprehension ability, resulting in uncertainty in many instances.
Opinion-based prompts change uncertain predictions of answerable questions to I don’t know,

5The 0.3B, 1.3B, 6.7B models refer to text-ada-001, text-babbage-001, text-curie-001, respectively. We do not
perform few-shot evaluation as different sizes of LLMs have different maximum input lengths and can take different
numbers of demonstrations, thus hard to be compared to each other.

6The sizes of the filtered evaluation sets, in the order of increased model sizes, are 121, 132, 756, and 2,773.
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Figure 5.2: Memorization ratios across different sizes of InstructGPTs, evaluated in the zero-shot
setting using natural questions.
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Figure 5.3: Brier scores across different sizes of InstructGPTs, evaluated in the zero-shot setting of
RealTime QA.

Method po↑ EM↑

Z
er

o-
sh

ot Base 92.1 11.1
Opin 91.3 25.2
Opin + Instr 90.5 57.2

O
ri

gi
na

l Base 93.2 77.8
Opin 92.7 78.7
Opin + Instr 93.9 80.1

C
ou

nt
er Base 93.6 82.1

Opin 92.8 82.3
Opin + Instr 92.7 82.1

Table 5.3: Results (in %) on the filtered evaluation set of natural questions with original (factual)
contexts and answers.

which could lead to worse results. For other prompting templates, we do not observe a consistent
improvement across different LLMs either. This analysis shows that while the selective prediction
ability can be more easily activated by zero-shot prompting for LLMs such as text-davinci-003,
smaller LLMs may require dedicated adaptations such as calibration and finetuning to activate this
ability.

Results on original datasets. While our main experiments demonstrate the effectiveness of the
proposed methods in resolving knowledge conflicts, LLMs in real-world applications may also
see instances without knowledge conflicts. Therefore, we investigate how our methods affect
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Knowledge Conflict Prediction with Abstention

Context (Counterfactual passage) The Super Bowl LI Half-
time show took place on February 5, 2017, at
NRG Stadium in Houston, Texas as part of Su-
per Bowl LI. The show was headlined by Bosco,
who performed a medley of her songs, including
newer material from her most recent studio album
Joanne.

Tara Connolly is senior gas campaigner at Global
Witness, an international NGO working towards a
more sustainable, just and equal planet. She has
over a decade of experience in EU energy policy.
The views expressed in this commentary are her
own.

Prompt Instruction: read the given information and answer
the corresponding question.

Instruction: answer a question based on the pro-
vided input-output pairs.

Bob said, “The Super Bowl ... album Joanne.” Bob said, “Tara Connolly ... are her own.”
Q: who performed the halftime show at Super
Bowl 51 in Bob’s opinion based on the given text?

Q: Mo Farah made public that he was trafficked
from which African country to the UK in Bob’s
opinion based on the given text?
Choices: Somaliland; Djibouti; Ethiopia; Soma-
lia; I don’t know

Base Lady Gaga ✗ Somalia ✗

Attr Lady Gaga ✗ Somalia ✗

Instr Lady Gaga ✗ Somaliland ✗

Opin Bosco ✓ I don’t know ✓

Instr + Opin Bosco ✓ I don’t know ✓

Answer Bosco I don’t know

Table 5.4: Examples of prompts and LLMs’ corresponding predictions. In the “Prompt” row, we
show and highlight the added parts from different prompting templates including attributed prompts,
instruction-based prompts, and opinion-based prompts.

inference when the memorized answers align with the given contexts. To do so, we evaluate LLMs
on the same set of filtered evaluation set used in the main results section (Section 5.4.2), but we
use the original contexts and answers instead of counterfactual ones. The results in Table 5.3
show that opinion-based prompts yield similar or better results in all settings. Furthermore, using
either counterfactual or original demonstrations does not significantly impact results on the original
(factual) dataset. This analysis reveals that our methods do not impair performance on instances
without knowledge conflicts.

5.4.5 Case Study

Table 5.4 shows some examples of prompts and the corresponding answers generated by text-
davinci-003. The left column of the table presents a knowledge conflict case where the original
answer, Lady Gaga, is replaced with a counterfactual answer, Bosco. When using base prompts,
LLM ignores the context and return the memorized answer Lady Gaga. However, using opinion-
based prompts and their combination with instructions leads to a more faithful response, with the
language model returning Bosco in the given context. The right column presents a scenario where
the retrieved context from Google search is irrelevant to the given question. In such cases, base
prompts still return a choice, leading to a potentially incorrect answer. However, opinion-based
prompts and their combination with instructions can abstain from making predictions and return
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I don’t know. These examples demonstrate the effectiveness of proposed prompts in generating
context-faithful responses.

5.5 Conclusion
We focus on addressing the faithfulness issue of LLMs in context-specific NLP tasks, particu-
larly in scenarios with knowledge conflict and prediction with abstention. We propose that two
methods, opinion-based prompts and counterfactual demonstrations, are effective in improving
LLMs’ faithfulness to contexts. We evaluate our methods on three datasets of two tasks, namely
machine reading comprehension and relation extraction, and observed significant improvement in
faithfulness to contexts. Future work includes evaluating the effectiveness of proposed methods
on a broader range of NLP tasks such as open-domain QA and summarization, and studying other
techniques to improve faithfulness further.
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Chapter 6

Dataset Annotation by Neural Rule Grounding

Deep neural models for relation extraction tend to be less reliable when perfectly labeled data is
limited, despite their success in label-sufficient scenarios. Instead of seeking more instance-level
labels from human annotators, here we propose to annotate frequent surface patterns to form
labeling rules. These rules can be automatically mined from large text corpora and generalized
via a soft rule matching mechanism. Prior works use labeling rules in an exact matching fashion,
which inherently limits the coverage of sentence matching and results in the low-recall issue. We
present a neural approach to ground rules for RE, named NERO, which jointly learns a relation
extraction module and a soft matching module. One can employ any neural relation extraction
models as the instantiation for the RE module. The soft matching module learns to match rules with
semantically similar sentences such that raw corpora can be automatically labeled and leveraged by
the RE module (in a much better coverage) as augmented supervision, in addition to the exactly
matched sentences. Extensive experiments and analysis on two public and widely-used datasets
demonstrate the effectiveness of the proposed NERO framework, comparing with both rule-based
and semi-supervised methods. Through user studies, we find that the time efficiency for a human
to annotate rules and sentences are similar (0.30 vs. 0.35 min per label). In particular, NERO’s
performance using 270 rules is comparable to the models trained using 3,000 labeled sentences,
yielding a 9.5x speedup. Moreover, NERO can predict for unseen relations at test time and provide
interpretable predictions 1.

6.1 Introduction
Relation extraction (RE) plays a key role in information extraction tasks and knowledge base
construction, which aims to identify the relation between two entities in a given sentence. For
example, given the sentence “Bill Gates is the founder of Microsoft” and an entity pair (“Bill Gates”,
“Microsoft”), a relation classifier is supposed to predict the relation of ORG:FOUNDED BY. Recent
advance in neural language processing has shown that neural models [20, 30, 220] gained great
success on this task, yielding state-of-the-art performance when a large amount of well-annotated
sentences are available. However, these supervised learning methods degrade dramatically when
the sentence-level labels are insufficient. This problem is partially solved by the use of distant
supervision based on knowledge bases (KBs) [221, 222]. They usually utilize an existing KB for
automatically annotating an unlabeled corpus with an over-simplified assumption — two entities

1This chapter is based on Zhou, Lin, Lin, Wang, Du, Neves, et al. [69].
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→ ORG:FOUNDED_BY

(SUBJ-PER, ‘s child, OBJ-PER) → PER:CHILDREN

(SUBJ-PER, is known as, OBJ-PER) → PER:ALTERNATIVE NAMES

Rules

p1

p2

p3

Corpus

s1

s2

s3

Hard Matching

1.0

0.9

0.8

Matching Score

Microsoft was founded by Bill Gates in 1975.

(SUBJ-ORG, was founded by, OBJ-PER)

Microsoft was created by Bill Gates in 1975.

In 1975, Bill Gates launched Microsoft.

Figure 6.1: Current rule-based methods mostly rely on exact/hard matching to raw corpus and
suffer from limited coverage. For example, the rule body of p3 only matches sentence s1 but is also
similar to s2 and s3, which express the same relation as p3. A “soft rule matching” mechanism is
desirable to make better use of the corpus for label generation.

co-occurring in a sentence should be labeled as their relations in the KB regardless of their contexts.
While distant supervision automates the labeling process, it also introduces noisy labels due to
context-agnostic labeling, which can hardly be eliminated.

In addition to KBs, labeling rules are also important means of representing domain knowl-
edge [89], which can be automatically mined from large corpora [223, 224]. Labeling rules can
be seen as a set of pattern-based heuristics for matching a sentence to a relation. These rules are
much more accurate than using KBs as distant supervision. The traditional way of using such rules
is to perform exact string matching, and a sentence is either able or unable to be matched by a rule.
This kind of hard-matching method inherently limits the generalization of the rules for sentences
with similar semantics but dissimilar words, which consequently causes the low-recall problem and
data-insufficiency for training neural models. For example, in Fig. 6.1, the rule P3 can only find S1
as one hard-matched instance for training the model while other sentences (e.g., S2 and S3) should
also be matched for they have a similar meaning.

Many attempts have been made to RE using labeling rules and unlabeled corpora, as summarized
in Fig. 6.2. Rule-based bootstrapping methods [225–227] extract relation instances from the raw
corpus by a pre-defined rule mining function (e.g., TF-IDF, CBOW) and expanding the rule set
in an iterative way to increase the coverage. However, they still make predictions by performing
hard-matching on rules, which is context-agnostic and suffers from the low-recall problem. Also,
their matching function is not learnable and thus has trouble in extracting semantically similar
sentences. Another typical option is data programming [89, 228], which aims to annotate the
corpus using rules with model fitting. It trains a neural RE model using the hard-matched sentences
by rules and then reduces the noise of rules with their proposed algorithms. However, it does
not consider the massive data that fail to be annotated by hard-matching. Self-training [229], as
a semi-supervised framework, does attempt to utilize unmatched sentences by using confident
predictions of a learned model. Then, they train the model again and again by iteratively generating
more confident predictions. However, it does not explicitly model the soft matching ability of rules
over unmatched sentences, making the generated labels noisy and unreliable.
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Figure 6.2: Comparison between previous work and the proposed NERO framework. (A) Bootstrap-
ping. (B) Data Programming. (C) Self-Training. (D) NERO. The neural rule grounding process
enables the soft-matching between rules and unmatched sentences using the soft rule matcher.
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We want to explicitly exploit labeling rules over unmatched sentences as supervision for training
better RE models, for which we propose a NEural Rule grOunding (NERO) framework. The NERO

framework has two major modules: a sentence-level relation classifier and a soft rule matcher. The
former aims to learn the neural representations of sentences and classify which relation it talks
about, which serves as the outcome of NERO. We first apply our collected rules on a raw corpus by
hard matching and use hard-matched sentences as the main training data for NERO. The unmatched
sentences are assigned with pseudo labels by the soft rule matcher, which is a learnable module
that produces matching scores for unmatched sentences with collected rules. The key intuition
behind our soft rule matcher is that the distances between rules and sentences can be modeled by
simple cosine computations in a new space transformed from their neural representations (e.g. word
embeddings), which can be learned by a contrastive loss. Jointly training the two modules reinforce
the quality of pseudo-labels and then improve the performance of the relation classification module.
Specifically, in a batch-mode training process, we use the up-to-date learned soft matcher to assign
all unmatched sentences with weighted labels, which further serve as an auxiliary learning objective
for the relation classifier module.

Extensive experiments on two public datasets, TACRED [20] and Semeval [230], demonstrate
that the proposed NERO consistently outperforms baseline methods using the same resources by
a large margin. To investigate the label efficiency of NERO, we further conduct a user study to
compare models trained with rules and labeled sentences, respectively, both created under the same
time constraint. Results show that to achieve similar performance, NERO requires about ten times
fewer human efforts in annotation time than traditional methods of gathering labels.

The contributions of our work are summarized as follows: (1) Our proposed method, NERO, is
among the first methods that can learn to generalize labeling rules for training an effective relation
extraction model, without relying on additional sentence-level labeled data; (2) We propose a
learnable rule matcher that can semantically ground rules for sentences with similar meaning that
are not able to be hard-matched. This method also provides interpretable predictions and supports
few-shot learning ability on unseen relations; (3) We conduct extensive experiments to demonstrate
the effectiveness of our framework in a low-resource setting and show careful investigations on the
efficiency of using human efforts.

6.2 Problem Formulation
We first introduce basic concepts and their notations and then present the problem definition as well
as the scope of the work.

Relation Extraction. Given a pair of entity strings (esubj, eobj), identified as the subject and
object entities respectively, the task of relation extraction (RE) is to predict (classify) the relation
r ∈ R ∪{NONE} between them, where R is a pre-defined set of relations of interest. Specifically,
here we focus on sentence-level RE [20, 230, 231], which aims to predict the relation of entity
mention pairs in a sentence s—i.e., identifying the label r ∈ R for an instance in the form of
(esubj,eobj;s)2 and yielding the prediction (esubj,r,eobj;s).

Labeling Rules. As an alternative to instance-level human-annotated data (e.g., instance-label pairs),
labeling rules formalize human’s domain knowledge in a structured way, and can be either directly

2We use “instance” and ”sentence” exchangeably in the rest of the chapter.
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used for making predictions over test instances [226], or applied to generate labeled instances for
model learning [89]. Formally, an inductive labeling rule consists of a rule body and a rule head.
In the context of relation extraction, we consider the cases where the rule body is a textual pattern
p = [SUBJ-TYPE;c; OBJ-TYPE], in which c denotes a word sequence between the two entities in
a sentence (i.e., context), and SUBJ-TYPE and OBJ-TYPE specify the entity types of the subject
and object entities required by the rule body. An instance (esubj,eobj;s) is hard-matched by a rule
p if and only if p’s context c exactly match the context between esubj and eobj in s and the entity
types of esubj and eobj match p’s associated entity types. For example, sentence s1 in Fig. 6.1 is
hard-matched by rule p3.

Such labeling rules can either be hand-written by domain experts, or automatically generated
from text corpora with a knowledge base that shares the relations of interests. In this work, we
adopt a hybrid approach (as detailed in Sec. 6.3.2): 1) we first extract surface patterns (e.g. frequent
patterns, relational phrases, etc.) as candidate rule bodies from raw corpora (after running named
entity recognition tool) using pattern mining tools, and 2) ask human annotators to assign relation
labels (i.e., rule heads) to the rule bodies. Then, we apply these human-annotated rules over
instances from a raw corpus to generate labeled instances (as training data). Compared to directly
annotating instances, our study will show that annotating rules is much more label-efficient, as
one rule may match many instances in the corpus with reliable confidence, generating multiple
labeled instances. Moreover, annotating rules may require similar (or even less) time than annotating
instances since they are shorter in length, as shown in our later analysis.

Example 1 (Labeling Rule Generation) Given instances such as {(Bill Gates, Microsoft; “Bill
Gates founded Microsoft.”), (Bill Gates, Steve Jobs; “Guests include Bill Gates and Steve Jobs.”)},
the candidate patterns include {“SUBJ-PERSON founded OBJ-PERSON”, “SUBJ-PERSON, OBJ-
PERSON”} , and the rule set after human annotation includes {“SUBJ-PERSON founded OBJ-
PERSON” → FOUNDED BY}. The second pattern is filtered out by annotators due to its low
quality.

Problem Definition. We focus on sentence-level relation extraction using labeling rules created
by a semi-automatic method. Specifically, given a raw corpus consisting of a set of instances
S = {(ei

subj,e
i
obj;si)}N

i=1, our approach first extracts surface patterns {[SUBJ-TYPE;c; OBJ-TYPE]} as
candidate rule bodies, and then annotates them to generate labeling rules P = {pk}|P|

k=1 with pk

denoting [SUBJ-TYPEk;ck; OBJ-TYPEk] → rk and rk ∈ R ∪{NONE}. Next, our framework aims
to leverage both the rules P and the corpus S to learn an effective relation classifier f : S →
R ∪{NONE} which can predict relation for new instances in unseen sentences.

In addition to predicting relations already observed in the training phase, we aim to predict
unseen relations solely based on new rules specified for the unseen relations at the test time—i.e., a
few-shot learning scenario. Such a generalization ability is desirable for domain adaptation. In this
setting, the model is trained on a corpus S using labeling rules defined on relation set Rc. In the
testing phase, the model is expected to make predictions on unseen relation types Ru given some
corresponding labeling rules.

Our Focus. Instead of relying on pre-existing knowledge bases to conduct distant supervision,
we focus on the scenarios where labeling rules are relatively cheaper and faster to obtain by
automatically inducing from large text corpora (as compared to manually curating a KB from
scratch). We study neural rule grounding to integrate information from rules and corpora into
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Figure 6.3: Overview of the NERO framework. Each unmatched sentence is first annotated by the
soft rule matcher (SRM) to generate pseudo labels, and then fed into the relation classifier (RC) to
update the model parameters. The whole framework is trained iteratively and jointly, based on
multiple loss functions as introduced in Sec. 6.3.5.

learning an effective relation extraction model that can generalize better than solely using rules in a
hard-matching manner. We mainly use surface pattern rules (e.g., similar to the ones used in [232])
and leave the study of more complex rules (e.g., regular expression) as future work.

6.3 Neural Rule Grounding (NERO)
This section introduces the important concepts in NERO, and provides details of the framework
design and learning objectives. We first present our key motivation, then give an overview of NERO

framework (Sec. 6.3.1) and introduce the details of each component (Secs. 6.3.2-6.3.4). Lastly, we
show how we jointly learn model parameters in NERO for sequence encoding and rule matching
(Sec. 6.3.5).
Motivation of Soft Rule Matching. Traditional methods of using labeling rules for relation
extraction are mainly based on exact string/pattern matching (i.e., hard-matching), where a sentence
can be annotated by a rule if and only if it has exactly the same surface form as the rule body.
While being easy to implement and yielding relatively high precision for the prediction, these hard-
matching methods only achieve sub-optimal performance because of the severe low recall issue (see
Fig. 6.1 for an example). Such a low coverage of using rules can only produce a minimal number of
“labeled” sentences for learning a RE model, which may be far from enough for data-hungry neural
models. To address this problem, we would like to study “soft-matching” for exploiting the rules
for relation extraction. A soft-rule matcher is proposed to semantically match a rule even when the
surfaces are different (e.g. “founded” v.s. “created”). Towards improving relation extraction with
soft-matching, we would like to learn a SRM such that we can assign pseudo-labels to sentences.
Further, we can use these pseudo-labeled sentences to learn a sentence-level relation classifier.

6.3.1 Framework Overview
The NERO framework consists of a relation classifier (RC) and a soft rule matcher (SRM). The RC is
for learning neural representations for sequences of words, from either an instance or a rule body
(Sec. 6.3.3). The SRM gives a matching score to indicate the similarity between a rule body and
an instance (Sec. 6.3.4). Previous works [227] mostly adopt a fixed metric function (e.g., cosine
similarity measure between the sequence embeddings). In contrast, our SRM is a learnable neural
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network and thus can be more effective in modeling the semantic similarity between sentences and
rule bodies. As shown in Fig. 6.3, we first apply our collected rules to a raw corpus S to perform
hard matching. S will then be divided into two subsets: “hard-matched sentences” Smatched and
“unmatched sentences” Sunmatched. Lastly, we use SRM and rules to iteratively generate pseudo labels
over Sunmatched, while jointly learning RC and SRM with the pseudo labels to promote a common
representation space (Sec. 6.3.5).

6.3.2 Labeling Rule Generation

As introduced in Sec. 6.2, our candidate rule bodies (i.e., surface patterns) are automatically
extracted from the raw corpus. In this work, we adopt a simple yet effective pattern mining method.
Given a raw corpus, we first replace entities with entity type masks SUBJ/OBJ-NER, where
“NER” denotes entity type (same as the procedure in [20]). Then we pick the word sequences
between and including the two entities as candidate rules. So each candidate rule is just a short
phrase / sentence containing two masked entities. To reduce the annotation efforts and ensure the
popularity of rules, we convert all words to their root form using Porter stemming algorithm [233]
and only keep the rules whose stemmed form appears at least N times in the whole corpus. Finally,
we ask human annotators to select rules that indicate a relation and assign labels to them. This
process is similar to label a sentence with a pre-defined relation or NONE. In spite of the existence
of more complex rule extraction methods such as shortest dependency path [223, 234] and meta
patterns [224], we adopt frequent word sequences in this work because of their simplicity and high
readability. Our framework can also be adapted to other rule generation methods as long as they can
generate human-readable candidate rules. Regardless of their high generalization ability, labeling
rules may bias the label distribution, e.g. PER:TITLE counts for 19% in the official training data
while only counts for 5.5% in the matched sentences. This domain gap poses another challenge for
learning with rules.

6.3.3 Relation Classifier (RC)

The relation classifier (named as RC) is the end product of our NERO framework, which can represent
a relation instance (e1,e2,s) into vector embeddings. This module is general and can use various
designs (e.g., attention CNN [235], attention RNN [20, 236], and GCN [30, 37]). In this work,
we stick with the LSTM + ATT model [236]. Given a sequence of n words, we first look up
their word embeddings as {xt}n

t=1. Then we use a bi-directional LSTM network [38] to obtain the
contextualized embeddings of each word {ht}n

t=1 where ht ∈ Rdh . Finally, we employ an attention
layer [237] to get a sentence representation c:

{ht}n
t=1 = BiLSTM({xt}n

t=1) (6.1)

αt =
exp(vT tanh(Aht))

∑
n
t ′=1 exp(vT tanh(Aht′))

(6.2)

c =
n

∑
t=1

αtht (6.3)
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where A∈Rda×dh , v∈ Rda are learnable model parameters for the attention mechanism. We can get
the relation type probability distribution by feeding Wrcc into a SoftMax layer:

RC(s,esubj,eobj) = SoftMax(Wrcc),

where Wrc ∈ Rdh×|R| is a matrix to learn. In other words, we are using the output vector of the RC
for modeling the conditional distribution of relation PθRC(r = i|s) = RC(s,esubj,eobj)[i], meaning that
i− th element of the RC output vector as the probability of the i-th relation for the input sentence s.
The θrc denotes the set of model parameters of RC that we need to learn, including A,v,Wrc, and
the weights of the BiLSTM.

6.3.4 Soft Rule Matcher (SRM)

The core component of the NERO is the soft rule matcher (named to be SRM), which is defined as
a neural function for modeling the matching score between a sentence s and a rule pattern p. We
formulate the Soft Rule Matcher as a function SRM : (s, p)→ [−1,1]. As shown in Fig. 6.4, we
first map the sentence s and rule p into the same embedding space by the RC, and then apply a
distance metric on their embeddings to get the matching score ranging from −1 to 1. Note that
a matching score of 1 indicates the sentence can be hard-matched by the rule. Because the rules
are typically short phrases, we use word-level attention – a weighted continuous bag-of-words
model to calculate matching scores. We explored more designs in later experiments and this part
can be further studied in future work. We represent a sentence and a rule pattern as the sequence
of the word embeddings, {xs

t}n
t=1 and {xp

t }m
t=1, respectively. By applying the attention on word

embeddings instead of contextualized embedding generated by LSTM, we aim to reduce over-fitting
given the scarcity of rules per relation. Note that we are using a different set of parameters for this
word embedding-level attention (B and v). Specifically, we have

zs =
n

∑
t=1

exp(uT tanh(Bxs
t))

∑
n
t ′=1 exp(uT tanh(Bxs

t′))
xs

t , (6.4)

zp =
m

∑
t=1

exp(uT tanh(Bxp
t ))

∑
m
t ′=1 exp(uT tanh(Bxp

t′))
xp

t , (6.5)

SRM(s, p) =
(Dzs)

T (Dzp)

∥Dzs∥∥Dzp∥
, (6.6)

where zs, zp are the representations for the sentence s and the rule p respectively, and D is a trainable
diagonal matrix which denotes the importance of each dimension. Similar idea has been shown
effective in other tasks for capturing semantically close phrases, and it generalizes well when only
limited training data is available [238]. In practice, a sentence may be very long and contain much
irrelevant information. So for the sentence, we only keep the words between (and including) the
subject and object entities, which is a common practice in other rule-based RE systems [227, 234].
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Figure 6.4: Detailed architecture of the soft rule matcher (SRM). The cosine similarity between two
embeddings indicates the degree of matching between rules and sentences.

6.3.5 Joint Module Learning

We now formulate the overall learning process of NERO in a low-resource learning scenario, where
we only have collected rules but no sentence-level labels at all. Given a raw corpus S (i.e. a
large set of sentences without human-annotated labels) and a set of inductive labeling rules P ,
we first exactly match every rule on S and get a set of hard-matched sentences named Smatched.
These hard-matched labels are pretty accurate3, which can serve the purpose as training examples.
The other unmatched sentences, denoted as Sunmatched are also informative for our model, while
they are ignored by most prior works. Although not able to be exactly matched by any rules, the
unmatched sentences can semantically align the meaning of some rules and thus help improve the
RE performance. By applying the SRM upon them to create pseudo-labels, we can further utilize the
hidden useful information as the supervision for learning the final RE model. Apart from that, the
SRM is also optimized for improving the quality of matching in the meantime. Finally, supervision
signals from Smatched, Sunmatched, and P together train the RE model in a joint learning schema.

Learning with Hard-Matched Sentences (Smatched). As the primary goal of the learning, we
want to minimize the error of the RC in classifying relations in the sentences in Smatched respect
to their matched relation labels. Given a hard-matched sentence s ∈ Smatched and its associated
relation rs ∈ R, we aim to minimize the cross-entropy loss Lmatched as follows.

Lmatched(θRC) = Es∼Smatched

[
− logPθRC(r = rs|s)

]
. (6.7)

Learning with Rules (P). To incorporate our collected rules for exploiting the unmatched
sentences Sunmatched as well, we propose two additional auxiliary tasks for imposing rules in the
RC and SRM. First, we can treat the rule body p ∈ P as a “sentence” and its rule head rp as its
associated label, thus forming a labeled instance (p,rp). With such rule-reformatted instances as

3We conduct an experimental analysis on the quality of these matches in Sec. 6.5.
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Figure 6.5: The contrastive loss in learning the SRM, which increases the matching score of rules
with the same relation type and decrease the matching score otherwise.

training data, we aim to minimize the error for RC in classifying them as follows. This objective
helps RC to explicitly reinforce the memory of RC about the collected rules.

Lrules(θRC) = Ep∼P

[
− logPθRC(r = rp|p)

]
(6.8)

More importantly, we present how we utilize the rules for learning the soft rule matcher (SRM)
such that we can exploit the unmatched sentences as distant supervision. Our key motivation here
is that a good matcher should be able to clustering rules with the same type, and thus we expect
the SRM to increase the distances between rules with different types and reduce the variance of the
distances between rules with the same types. Simply put, given two rules, their similarity score
should be high if they belong to the same relation type and low otherwise.

We use the contrastive loss [239] for this objective. Given a rule p ∈ P and its relation rp ∈ R,
we divide all the other rules with the same relation type as P+(p) = {p′|rp′ = rp}, and the ones
with different types as P−(p) = {p′|rp′ ̸= rp}. The contrastive loss aims to pull the rule p closer to
its most dissimilar rule in P+(p) and in the meantime push it away from its most similar rule in
P−(p). Mathematically, the loss is defined as follows:

Lclus = Ep∼P

[
max

pi∈P+(p)
dist+(p, pi)− min

p j∈P−(p)
dist−(p, p j)

]
, (6.9)

where the measurement of the most dissimilar same-type rule and most similar different-type rule
can be measured with the distances defined as below:

dist+(p, pi) = max
(
τ −SRM(p, pi), 0

)2
,

dist−(p, p j) = 1−max
(
SRM(p, p j), 0

)2
.

τ is a hyper-parameter for avoiding collapse of the rules’ representations. Minimizing Lclus pushes
the matching scores of rules that are of the same relation type up to τ and pull the matching score
down to 0 otherwise. Without labels about the alignment between rules P and unmatched sentences
Sunmatched, this objective can be seen as a secondary supervision for SRM to train the parameters
θSRM using P itself only by this contrastive loss.

Learning with Unmatched Sentences (Sunmatched). We use the SRM to label unmatched sentences
Sunmatched (see Fig. 6.3). As the labels generated by the SRM may be noisy, we propose to use
pseudo-labeling [240] with instance weighting [241] to alleviate the noise. Each unmatched
sentence is weighed by the matching score from the SRM. Specifically, for each unmatched sentence
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s ∈ Sunmatched, we first apply the SRM to compute its matching scores with each rule p ∈ P and
then assign the pseudo-label to the sentence s as the relation of the highest-score rule rp̂, where

p̂ = argmax
p∈P

SRM(s, p).

The corresponding weight for a particular pseudo-labeled instance, (si, p̂i), is the SoftMax over all
the sentences (in a mini-batch when training; see Sec. 6.4.1 for more details):

ws =
exp(σSRM(s, p̂i))

∑s′∈Sunmatched
exp(σSRM(s′, p̂ j))

, (6.10)

where σ represents the temperature of the SoftMax function. The loss function for each batch of
unmatched sentences would be:

Lunmatched(θRC) = Es∼Sunmatched

[
−ws logPθRC(r = rp̂|s)

]
. (6.11)

Joint Optimization Objective. The whole framework is jointly trained under the overall loss
function:

L(θRC,θSRM) = Lmatched(θRC) +

α ·Lrules(θRC)+β ·Lclus(θSRM)+ γ ·Lunmatched(θRC).

To sum up, the proposed NERO framework has two trainable components: a relation classifier
(RC) and a soft rule matcher (SRM) with their specific parameters (θRC and θSRM). Our primary
task is to minimize the error of the RC on the hard-matched sentences (Lmatched). To exploit the
unmatched sentences with collected rules, we first let RC to explicitly learn the rules with the
objective of rule classification (Lrules) and also learn the SRM with the help of contrastive loss (Lclus)
for clustering rules. We jointly learn the two modules by connecting them through pseudo-labeling
on the unmatched sentences with the SRM and then expect the RC has better performance on such
pseudo-labeled unmatched sentences as well (Lunmatched).

6.4 Model Learning and Inference
In this section, we introduce the specific training details of our proposed framework, and how the
model conduct inference.

6.4.1 Parameter Learning of NERO

NERO starts with a raw corpus S and pre-defined relations R∪{NONE}. It first extracts candidate
rules from S with pattern mining tools, then asks human annotators to select and label the rules to
get the rule set P . Before training, NERO does a quick pass of S by hard-matching to split it into
hard-matched sentences Smatched and unmatched sentences Sunmatched. Both of them are utilized
to train the relation classifier RC in a joint-training manner. Algorithm 3 summarizes the overall
training procedure.

The joint training objective is efficiently optimized by batch-mode training. Specifically, in each
training step we randomly sample a batch of hard-matched sentences Bm from Smatched, and then
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Algorithm 3: Optimization of NERO model
Input: A raw corpus S , pre-defined relations R ∪{NONE}.
Output: A relation classifier f : S → R ∪{NONE}.
Extract candidate rules from S with pattern mining tools.
Ask human annotators to select and label the candidate rules to get P .
Partition S into Smatched and Sunmatched by hard-matching with P .
while L in Eq. 6.3.5 not converge do

Sample batch Bm = {(si,ri)}n
i=1 from Smatched.

Update Lmatched by Eq. 6.7.
Sample batch Bu = {s j}m

j=1 from Sunmatched.
foreach s ∈ Bu do

Find highest-scored rule p̂ and pseudo label rp̂ by SRM.
Update Lunmatched by Eq. 6.12.
Update Lrules by Eq. 6.8.
foreach p ∈ P do

Calculate SRM(p, p′) for each p′ ∈ P −{p}.
Update Lclus.

L = Lmatched +α ·Lrules +β ·Lclus + γ ·Lunmatched.
Update model parameters w.r.t. L.

calculate the average cross-entropy loss in the batch by Lmatched. Similarly, we sample Bu from
Sunmatched, and generate the pseudo-labels with the entire rule set P , and calculate normalized
weights for Lunmatched by:

ws =
exp(σSRM(s, p̂i))

∑s′∈Bu exp(σSRM(s′, p̂ j))
,

Lunmatched(θRC) =
1

|Bu| ∑
s∈Bu

[
−ws logPθRC(r = rp̂|s)

]
.

(6.12)

The normalized instance weights ensure the scale of Lunmatched to be stable across different steps.
Finally, we calculate Lrules and Lclus with the entire P . For Lrules, the loss is averaged for all p ∈P .
For Lclus, we take all p ∈ P to calculate the contrastive loss w.r.t. P −{p}, and average the losses.
We do not sample P due to the relatively small number of rules and simple structure of the soft rule
matcher (SRM). We stop training when the joint training loss L converges and take RC as the output.
Note that word vectors are also trainable parameters that are initialized by pre-trained embeddings.

6.4.2 Model Inference

Model inference in NERO aims at predicting the relation of a new sentence. Intuitively, we can
give out a prediction by passing the sentence through the RC and return the relation with the highest
probability as the prediction. As an alternative, we can also predict the relation using the SRM. Given
a sentence, we can first find the most similar rule and return its rule head as the prediction. This
alternative way of inference can be applied for predicting unseen relations given new rules in the
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Dataset # Train / Dev / Test # Relations # Rules # matched Sent.

TACRED [20] 75,049 /25,763 / 18,659 42 270 1,630
SemEval [230] 7,199 /800 / 1,864 19 164 1,454

Table 6.1: Statistics for TACRED and SemEval datasets.

testing time. In experiments, the first method shows much better performance, since RC can capture
rich contextual information while the SRM cannot.

For predicting “NONE” examples, our model filters out the predictions that our model is least
certain4 about. Specifically, we measure the uncertainty using the entropy of softmax distribution or
the similarity score produced by SRM.

6.5 Experiments
In this section, we first introduce the datasets and compared baseline methods. Then, we illustrate
the detailed setup and present extensive experiments with discussion and analysis. Finally, we
conduct user studies to investigate the efficiency of our proposed approach.

6.5.1 Data Preparation
We choose two public and widely-used sentence-level relation extraction datasets in our experiments
(see Tab. 6.1) as follows. For both datasets, we construct the rule set as illustrated in Section 6.3.25.

• TACRED [20] (TAC relation extraction dataset) contains more than 100,000 sentences
categorized into 42 relation types. Among the sentences, 79.5% of the examples are labeled
as NONE. We construct 270 rules which 1,630 hard-matched sentences in the official training
data;

• SemEval 2010 Task 8 [230] contains about 10,000 sentences with 19 relation types, where
17.4% of the sentences are NONE. We construct 164 rules which hard-match 1,454 instances
in the official training data.

6.5.2 Compared Methods
Recall Sec. 6.3.5, we first apply hard-matching on the unlabeled sentences and partition them
into hard-matched sentences (Smatched) and unmatched sentences (Sunmatched). Our framework is
applicable in both training with Smatched and training with Smatched∪Sunmatched. Thus, we compare
our models with rule-based methods, supervised methods and semi-supervised methods. For both
semi-supervised and supervised methods, we use hard-matched sentences as the training data for
comparing under the same setting. The experiments evaluate the ability to use rules for improving
RE.

4A threshold δ tuned on dev set is used.
5We filter candidate patterns by requiring frequency ≥ 3.
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Rule-based Baseline Methods. We apply the following models on Smatched ∪Sunmatched: (1)
CBOW-GloVe adopts continuous bag-of-words [242] on GloVe embeddings [243] to represent a
sentence or rule body, which labels a sentence using its most similar rule (in cosine distance).
(2) BREDS [227] is a rule-based bootstrapping method originally designed for corpus-level RE.
Given some entity pairs as seeds, it alternates between extracting new rules and new entity pairs.
BREDS performs soft matching between rules and sentences using average word embeddings. In
our experiments, we apply the set of rules learned by BREDS to perform hard-matching over the
test sentences at the prediction time. (3) The Neural Rule Engine (NRE [244]) is an unsupervised
method of soft-matching. It generalizes given rules by first performing unigram matching for each
token in the rules using CNN, then accumulates the matching scores of all tokens along the parsed
tree structure. When used for prediction, NRE performs soft-matching on the given rules.

Supervised Baseline Methods. We apply the following methods on Smatched: (1) PCNN [220]
represents each token using both word embeddings and positional embeddings. Convolution and
piecewise max pooling layer are performed to produce the sentence embedding. (2) LSTM+ATT
adopts bi-directional LSTM and attention mechanism [237] to produce a sentence embedding,
which is fed into a fully-connected layer and a softmax classifier to predict the relation. (3)
PA-LSTM [20] extends the LSTM model by incorporating positional information into attention
mechanism and achieved state-of-the-art performance on TACRED. (4) Data Programming [89,
228] denoises the conflicting rules by learning their accuracy and correlation structures. (5)
LSTM+ATT (Smatched+P) extends the LSTM+ATT model by also using rules as training data. It
serves as the base model for all semi-supervised baselines.

Semi-Supervised Baseline Methods. To make fair comparisons with NERO, we also regard labeling
rules as training data (same to Lrules) and use LSTM+ATT (Smatched+P) as the base model. We
apply the following methods on Smatched ∪Sunmatched ∪P: (1) Pseudo-Labeling [240] trains the
network using labeled and unlabeled data simultaneously. Pseudo-Labels are created for unlabeled
data by picking up the class with the maximum predicted probability and are used as if they are
labeled data during training. (2) Self-Training [229] iteratively trains the model using the
labeled dataset and expands the labeled set using the most confident predictions among the unlabeled
set. This procedure stops when unlabeled data is exhausted. (3) Mean-Teacher [245] assumes
that data points with small differences should have similar outputs. We perturb each unlabeled
sentence using word dropout and regularize their outputs to be similar. (4) DualRE [231] jointly
trains a relation prediction and a retrieval module which mutually enhance each other by selecting
high-quality instances from unlabeled data.

Variants of NERO. (1) Nero w/o Sunmatched removes the loss on unmatched sentences and only
use Smatched and P in model training. It only performs hard-matching on rules. (2) Nero-SRM
has the same training objective as NERO, but uses the soft rule matcher (SRM) to make predictions.
Given a sentence, NERO-SRM finds the most similar rule and returns the rule head as the prediction.
It can be taken as a context-agnostic version of NERO (Sec. 6.4.2).

6.5.3 Experiment Settings

Implementation. We implement most baselines from the scratch using Tensorflow 1.10 [246]
except for those that have released their codes (like PA-LSTM and DualRE). We adapt the baselines
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Method / Dataset TACRED SemEval
Precision Recall F1 Precision Recall F1

Rules 85.0 11.4 20.1 81.2 17.2 28.5
BREDS [227] 53.8 20.3 29.5 62.0 24.5 35.1
CBOW-GloVe 27.9 45.7 34.6 44.0 52.8 48.0

NRE [244] 65.2 17.2 27.2 78.6 18.5 30.0
PCNN [220] 44.5 ± 0.4 24.1 ± 2.8 31.1 ± 2.6 59.1 ± 1.4 43.0 ± 0.7 49.8 ± 0.5
LSTM+ATT 38.1 ± 2.7 39.6 ± 2.7 38.8 ± 2.4 64.5 ± 2.8 53.3 ± 2.8 58.2 ± 0.8
PA-LSTM [20] 39.8 ± 2.5 40.2 ± 2.0 39.0 ± 0.6 64.0 ± 3.6 54.2 ± 2.5 58.5 ± 0.6
Data Programming [89] 39.2 ± 1.3 40.1 ± 2.0 39.7 ± 0.9 61.8 ± 2.1 54.8 ± 1.1 58.1 ± 0.7

LSTM+ATT (Smatched +P) 39.2 ± 1.7 45.5 ± 1.7 42.1 ± 0.9 63.4 ± 2.1 55.0 ± 0.3 58.8 ± 0.9
Pseudo-Labeling [240] 34.5 ± 4.1 37.4 ± 5.1 35.3 ± 0.8 59.4 ± 3.3 55.8 ± 2.1 57.4 ± 1.3
Self-Training [229] 37.8 ± 3.5 41.1 ± 3.1 39.2 ± 2.1 62.3 ± 2.0 53.0 ± 2.7 57.1 ± 1.0
Mean-Teacher [245] 46.0 ± 2.7 41.6 ± 2.2 43.6 ± 1.3 62.3 ± 1.5 54.5 ± 1.2 57.9 ± 0.5
DualRE [231] 40.2 ± 1.5 42.8 ± 2.0 41.7 ± 0.5 63.7 ± 2.8 54.6 ± 2.1 58.6 ± 0.8

NERO w/o Sunmatched 41.9 ± 1.8 44.3 ± 3.8 42.9 ± 1.4 61.4 ± 2.4 56.2 ± 1.9 58.6 ± 0.6
NERO-SRM 45.6 ± 2.2 45.2 ± 1.2 45.3 ± 1.0 54.8 ± 1.6 55.2 ± 2.0 54.9 ± 0.6
NERO 54.0 ± 1.8 48.9 ± 2.2 51.3 ± 0.6 66.0 ± 1.5 55.8 ± 0.9 60.5 ± 0.7

Table 6.2: Performance comparison (in %) of relation extraction on the TACRED and SemEval
datasets. We report the mean and standard deviation of the evaluation metrics by conducting 5 runs
of training and testing using different random seeds. We use LSTM+ATT (Smatched +P) as the
base model for all semi-supervised baselines and our models.

to our setting. For supervised and semi-supervised baselines, we use the hard-matched sentences
(Smatched) as the “labeled data” and the unmatched sentences (Sunmatched) as the “unlabeled data”.
Training details. We use pre-trained Glove embeddings [243] to initialize the word embeddings and
fine-tune them during training. For NERO, We set the batch size to 50 for hard-matched sentences,
and 100 for unmatched sentences. For other baselines, we set the batch size to 50. To exclude
the possibility that NERO takes advantage of a larger batch size, we also tried a batch size of 150
for other baselines but it showed no difference in performance. To reduce over-fitting, we adopt
the entity masking technique [20] and replace the subject and object with SUBJ/OBJ–NER and
regard them as normal tokens. We use a two-layer bi-directional LSTM as the encoder. The hidden
dimension is 100 for the LSTM, and 200 for the attention layers. We set β , γ , τ to 0.05, 0.5, and 1.0
respectively. We set α to 1.0 for TACRED, and 0.1 for SemEval. The temperature θ in instance
weighting is set to 10. We apply dropout [63] after the LSTM with a rate of 0.5. All models are
optimized using AdaGrad [247] with initial learning rate 0.5 and decay rate 0.95. For models that
require the prediction of NONE (including NERO and all supervised / semi-supervised baselines),
we select the threshold (see 6.4.2) from range [0.0, 1.0] based on the dev set.

6.5.4 Performance Comparison
Rule-based Models. We first compare the models that solely use rules, as shown in Table 6.2. Hard-
matching with rules achieves a high precision (85% on TACRED) but suffers from the low-recall
problem due to its failure in matching instances with similar meanings (only 11.4% on TACRED).
Bootstrapping methods (such as BREDS) and unsupervised soft-matching methods (such as NRE)
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Figure 6.6: Performance w.r.t. different number of rules and human-annotated labels on TACRED.
We show different models’ F1 scores and number of rules or labels used for training the correspond-
ing model.

manage to cover more instances (6% gain in recall on TACRED dataset), but they fail to capture
contextual information.

Models Trained on Smatched. Neural networks are capable of fitting the hard-matched data, but
they suffer from over-fitting due to the small data size. Adding the pattern encoder loss (Lrules) and
the soft matching loss (Lclus) boosts the performance by a huge margin, as indicated by LSTM+ATT
(Smatched+P) and NERO w/o Sunmatched). However, their performance is still far from satisfactory,
since they cannot utilize large amounts of unmatched sentences. Data programming does not bring
any improvement because our rule mining and labeling method rarely introduces conflicted labeling
rules. Hence, data programming with our rules is the same as LSTM+ATT.

Models Trained on Smatched ∪Sunmatched ∪P . Table 6.2 shows the results for methods that
incorporate unmatched data and rules. For methods that actively create labels for unmatched
data, namely pseudo-labeling, self-training and DualRE, their performance is even worse than the
supervised counterparts (LSTM+ATT (Smatched +P)). It is because in a low-resource setting, the
model performance is so low that the created labels are very noisy. Mean-Teacher manages to
improve model performance on TACRED, but only by a small margin. Our proposed model, NERO,
is relatively indifferent to the noise due to the soft rule matcher, which learns directly from similar
textual sentences. This results in a significant gain in precision (14% on TACRED) and recall
(4% on TACRED) over the semi-supervised baselines. Compared to TACRED, the improvement
on SemEval is much smaller (only 1.7% in F1). We hypothesize it is because the sentences in
SemEval are quite short and contain very simple rule patterns. Thus, the soft-matched sentences
can hardly provide additional information. We also try to predict with the soft rule matcher, but the
performance is lower in F1 (45.3% on TACRED and 54.9% on SemEval) since it cannot capture
contextual information.
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6.5.5 Performance Analysis
1. Performance on Various Amounts of Rules and Human Annotated Labels. To show that
our rules are more powerful than human-annotated labels, we show the performance of models
trained with different number of rules (30%, 50%, 70%, and 100%) and the number of labels
required to reach comparable performance using supervised baseline (LSTM+ATT). We random
sample subsets of rules w.r.t. each relation to avoid extreme cases where some relations are not
sampled at all. We conduct 5 runs of sampling and training and report the average performance.
As shown in Figure 6.6, NERO consistently outperforms other methods by a huge margin, and
its performance increases with the number of rules (from 42.3% to 51.3%). Mean-Teacher also
outperforms the base model especially when the number of rules is small, but its performance
does not increase much (from 41.3% to 43.6%). It shows that Mean-Teacher generalizes well in
low-resource setting but cannot fully utilize the knowledge in rules. In terms of label efficiency, one
rule in NERO is equivalent to 10 human-annotated labels in model performance. Even in the base
model LSTM+ATT (Smatched +P), one rule is still equivalent to about 4 labels. It demonstrates
the superior generalization ability of rules over labels.
2. Performance on Various Amounts of the Raw Corpus. To test the robustness of our model,
we plot the performance curve in Fig. 6.7 when different amounts of raw corpus are available
on TACRED. Again, NERO outperforms all methods, and its F1 score positively correlates to the
amount of available data (from 43.4% to 51.3%). We also observe similar phenomena in other
methods (all based on LSTM+ATT (Smatched +P) model), which show that matching on rules
provides additional knowledge to model training. Just memorizing these rules with a neural model
leads to very bad performance. Also, we observe that with only 10% of data, our final model
(NERO) already outperforms the best supervised baseline NERO w/o Sunmatched. This indicates that
the soft matching module can utilize the raw corpus and rules in a more data-efficient way.
3. Performance on Unseen Relations. To show that NERO has the capacity of predicting unseen
relations, we evaluate NERO on relations unseen in training. In the experiment, we randomly
sample 5 relations as unseen relations and repeat the experiment 10 times. In each time, we use the
same sets of unseen relations and the same random seed for all methods. We remove the sampled
relations (both sentences and rules) in training while keeping only them in testing. We sample
sentences of other relations as NONE relation in testing with the same ratio as the raw corpus (79.5%
for TACRED and 17.4% for SemEval). Moreover, since the special tokens SUBJ/OBJ-NER are
out-of-vocabulary in both Glove and BERT, we only use the words between two entities in encoding
and only use rules with the same entity types to the sentence in inference. To make predictions
by NERO, we find the most similar rule using soft rule matcher. Baseline models include exact
rule matching, cosine similarity of average Glove embedding, and cosine similarity of pre-trained
BERT embedding [14]. As shown in Table 6.3, our soft rule matcher achieves similar or better
performance compared to all baselines. It shows that instead of just memorizing the rules and
the corresponding relation types, the soft rule matcher also learns knowledge about how to better
perform rule matching and can even generalize to unseen relations.

6.5.6 Model Ablation Study
1. Effect of Different Loss Functions. To show the efficacy of our proposed losses (Lclus, Lunmatched
and Lrules), we conduct ablation study on loss functions by removing one loss function at a time. As
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Figure 6.7: Performance of different semi-supervised models trained using various amounts of
unlabeled sentences randomly sampled from the raw corpus on TACRED.

TACRED SemEval
Method P R F1 P R F1

Rule (exact match) 100 6.1 10.8 83.2 17.7 28.2
CBOW-GloVe 52.4 86.3 64.7 40.3 45.5 34.7
BERT-base (frozen) 66.2 76.8 69.5 37.8 33.2 35.3
NERO 61.4 80.5 68.9 43.0 54.1 45.5

Table 6.3: Performance on predicting unseen relations. NERO applies the learned soft rule matcher
on unseen relation rules to make predictions.

shown in Table 6.4, all three losses contribute to the final performance, while Lunmatched helps the
most, which proves the effectiveness of soft-matching. When removing the contrastive loss Lclus,
the F1 score drops from 51.3 to 46.4, which shows the effectiveness of a trainable SRM. The Lrules
loss also brings improvement, similar to including more training instances.

Objective Precision Recall F1

L (ours) 54.0 48.9 51.3
−Lrules 50.0 47.7 49.0
−Lclus 50.9 43.0 46.4
−Lunmatched 41.9 44.3 42.9

Table 6.4: Ablation Study of Different Training Objectives on TACRED dataset. We remove each
loss term one at a time.
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2. Effect of Different Soft-matching Models. Besides word-level attention, we also try other
soft matching mechanisms including CBOW-Glove, LSTM+ATT, and BERT-base (both frozen
and fine-tuned). All methods first summarize the sentences / rules into vector representations,
then calculate the matching scores by cosine similarity. We report their performance in Table 6.5.
We observe that our method achieves the best performance despite its simplicity. To our surprise,
BERT-base performs much worse than our method. In the experiment we find that BERT tends to
given high matching scores for all sentence-rule pairs so our framework cannot distinguish the false
pseudo-labels from reliable ones.

Objective Precision Recall F1

CBOW-Glove 49.4 43.5 46.2
LSTM+ATT 56.2 46.0 50.6
BERT-base (frozen) 45.6 47.6 46.5
BERT-base (fine-tuned) 50.3 45.8 47.9
Word-level attention (ours) 54.0 48.9 51.3

Table 6.5: Ablation study of different soft-matching models for NERO on the TACRED dataset.

3. Sensitivity Analysis of Model Hyper-parameters. The most important hyper-parameters in
NERO are α , β , γ , and τ . We test the sensitivity of these parameters on TACRED. We adjust one
hyper-parameter at a time and remain the other three unchanged. The results are shown in Figure
6.8. We observe that for τ and β , there exists a wide interval where the F1 score remains stable. For
α and γ , the F1 score hardly changes with the choice of their values. This is because that Lmatched,
Lclus, and Lrules quickly drop to 0 and Lunmatched dominates the joint loss in the training phase, and
the impact of γ is lessened by adaptive subgradient method (AdaGrad).

6.5.7 Case Study
Study on Label Efficiency. To test the label efficiency of rules and sentences in real scenarios, we
ask 5 college students in computer science to annotate frequent candidate rules (with frequency
≥ 3) and the unlabeled sentences, during a 40-minute period. For annotating sentences, they are
required to provide labels from the pre-defined relation set R∪NONE. For annotating candidate
rules, they are required to filter out uninformative rules (e.g. “SUBJ-PERSON and OBJ-PERSON”)
and assign labels to the remaining ones. For each candidate rule, they are further given an example
of hard-matched sentence to help understand the meaning and context of the rule. Then we use each
user’s annotations to train the RE model. We use LSTM+ATT for labeled sentences and NERO for
rules.

We report the average number of selected rules / labeled sentences and performance of trained
RE model every 5 minutes in Figure 6.10. We observe that getting rules is nearly as fast as getting
labels but is much more efficient. With the same annotation time, NERO can already learn a good
RE classifier (with 41.3% F1), while LSTM+ATT cannot learn anything from the labels. In just 40
minutes, NERO can achieve comparable performance to 1000 labels (refer to Figure 6.6), which
requires about 320 minutes to annotate.
Interpretability of Soft Rule Grounding. Fig. 6.9 gives an example of the similarity matrix,
showing that our soft matching module learns meaningful representations of rules for soft matching.
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The left part of the figure presents 1) which words are more important for building attention-
pooled rule/sentence representations, and 2) the soft matching scores between the rule and three
sentences. We also show two concrete examples of attention matrix in the right part. For each
word-pair between a rule and a sentence, we visualize the cosine similarity matrix between word
representations learned with the contrastive loss. While the word “chairman” in our rule matches
perfectly with the same surface word in the sentence, it also has a high similarity score with “Chief”
and “Executive”.

6.6 Related Work
Relation Extraction. Traditional corpus-level RE systems take a rule-based approach, in which
rules are either handcrafted [248] or automatically learned from large corpora [226, 227]. Although
feature-based soft matching methods (e.g. TF-IDF, CBOW) are used in rule mining, the inference
(i.e, labeling new sentences) is still done by hard-matching, which leads to high precision but
low recall due to the low coverage of rules. While we use a trainable soft rule matcher, which is
more powerful than prior feature-based methods. And we apply soft-matching to both training
and inference phase in a consistent manner. Recent RE models [20, 220, 249] successfully apply
deep neural networks with the help of large scale datasets such as SemEval [230] and TACRED
[20]. However, their performance degrades heavily when labeled data is insufficient. Some work
[228, 250] proposes to train a RE classifier from natural language explanations, which are first
transformed to labeling rules by a semantic parser then applied to raw corpora by hard-matching.
But none of them utilizes the data that cannot be matched by rules, which is of massive amount.
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Figure 6.8: Sensitivity analysis of τ , α , β , and γ on TACRED. We report the mean and standard
deviation F1 score by conducting 5 runs of experiments using different random seeds.
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Figure 6.9: Output visualization of SRM. Left: attention weights of words and the soft matching
scores between a rule and three sentences. Right: cosine similarity matrix between word embeddings
learned with the contrastive loss.
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Figure 6.10: Study on label efficiency. Average number of rules / sentences labeled by annotators
(dashed line) are shown on the x-axis over the left-hand side; and the performance of models
trained with these corresponding labeled rules / sentences (solid line) are shown on the x-axis over
the right-hand side. We use NERO and LSTM+ATT as the base model for the labeling rules and
sentences, respectively.

This motivates us to propose a framework that can fully utilize the information from both rules and
raw corpora.

Semi-Supervised Learning. Our work is relevant to semi-supervised learning, if we consider
rule-annotated data as labeled among the corpus, e.g., self-training [229], mean-teacher [245], and
semi-supervised VAE [251]. In relation extraction, one line of work proposes to alleviate the low
recall problem in rule-based approach using bootstrapping framework [226, 252] and revised pattern
matching [227, 253]. However, their settings are tailored for corpus-level RE. Another line of work
applies self-training framework in supervised learning models. However, These models turn out to
be ineffective in rule-labeled data due to potentially large difference in label distribution, and the
generated psuedo-labels may be quite noisy.
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6.7 Conclusion
We proposed a novel framework, named NERO, for label-efficient relation extraction. We auto-
matically extracted frequent patterns from large raw corpora and asked users to annotate them to
form labeling rules. To increase the coverage of these rules, we further proposed the soft-matching
mechanism, where unlabeled sentences are annotated by their most semantically similar labeling
rules and weighted in training the RE model. Experiments on two public datasets proved the
effectiveness of our framework.

81



Chapter 7

Continual Contrastive Finetuning

Relation extraction (RE), which has relied on structurally annotated corpora for model training,
has been particularly challenging in low-resource scenarios and domains. Recent literature has
tackled low-resource RE by self-supervised learning, where the solution involves pretraining the
relation embedding by RE-based objective and finetuning on labeled data by classification-based
objective. However, a critical challenge to this approach is the gap in objectives, which prevents the
RE model from fully utilizing the knowledge in pretrained representations. We aim at bridging the
gap and propose to pretrain and finetune the RE model using consistent objectives of contrastive
learning. Since in this kind of representation learning paradigm, one relation may easily form
multiple clusters in the representation space, we further propose a multi-center contrastive loss
that allows one relation to form multiple clusters to better align with pretraining. Experiments on
two document-level RE datasets, BioRED and Re-DocRED, demonstrate the effectiveness of our
method. Particularly, when using 1% end-task training data, our method outperforms PLM-based
RE classifier by 10.5% and 6.1% on the two datasets, respectively1.

7.1 Introduction
Relation extraction (RE) is a fundamental task in NLP. It aims to identify the relations among
entities in a given text from a predefined set of relations. While much effort has been devoted
to RE in supervised settings [20, 30, 255], RE is extremely challenging in high-stakes domains
such as biology and medicine, where annotated data are comparatively scarce due to overly high
annotation costs. Therefore, there is a practical and urgent need for developing low-resource RE
models without the reliance on large-scale end-task annotations.

To realize low-resource RE, previous work has focused on pretraining relation mention rep-
resentations on large corpora using RE-based pretraining objectives. Particularly, Baldini Soares,
FitzGerald, Ling & Kwiatkowski [256] propose a self-supervised matching-the-blanks (MTB)
objective that encourages the representations of pairs of relation mentions to be similar if they
contain the same entity pairs. Later work [257, 258] extends this idea by generating relation
mention pairs with distant supervision [259] and improves representation learning using contrastive
learning [136, 137, 260]. To adapt to training on RE annotations, these works finetune pretrained
relation mention representations on labeled data using classification-based objectives. Although
this paradigm produces better results compared to RE models initialized with pretrained language

1This chapter is based on Zhou, Zhang, Naumann, Chen & Poon [254].
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models (PLMs), it creates a significant divergence between pretraining and finetuning objectives,
thus preventing the model from fully exploiting knowledge in pretrained representations.

We aim to bridge this gap in RE pretraining and finetuning. Our key idea is to use similar
objectives in pretraining and finetuning. First, we propose to continually finetune the representations
by contrastive learning, which encourages the representations of relation mentions corresponding to
the same relation to be similar. However, as pretraining and finetuning are conducted on different
tasks, relation mentions of the same relation can form multiple different clusters in the pretrained
representation, where standard supervised contrastive loss [154] may distort the representation
because of its underlying one-cluster assumption [261]. Therefore, we further propose a multi-center
contrastive loss (MCCL), which encourages a relation mention to be similar to only a subset of
mentions of the same relation type, allowing one relation to have multiple clusters. Second, we
propose to use k-nearest neighbors (kNN; [262, 263]) in inference, where predictions are made
based on most similar instances.

We focus our work on document-level RE [21, 264], which consists of both intra- and cross-
sentence relations. To the best of our knowledge, this work represents the first effort to explore
self-supervised pretraining for document-level RE. Unlike prior studies [257, 258], we do not use
distant supervision. Instead, we pretrain relation mention representations with an improved MTB
objective on unlabeled corpora, where we use contrastive learning to learn representations that suit
downstream RE. We then finetune the pretrained model on labeled data with MCCL. Experiments on
two datasets, BioRED [11] in the biomedical domain and Re-DocRED [265] in the general domain,
demonstrate that our pretraining and finetuning objectives significantly outperform baseline methods
in low-resource settings. Particularly, in the low-resource setting of using 1% of labeled data, our
method outperforms PLM-based classifiers by 10.5% and 6.1% on BioRED and Re-DocRED,
respectively. Based on our pretrained representations, MCCL outperforms classification-based
finetuning by 6.0% and 4.1%, respectively.

Our technical contributions are three-fold. First, we propose to pretrain the PLMs based on
our improved MTB objective and show that it significantly improves PLM performance in low-
resource document-level RE. Second, we present a technique that bridges the gap of learning
objectives between RE pretraining and finetuning with continual contrastive finetuning and kNN-
based inference, helping the RE model leverage pretraining knowledge. Third, we design a novel
MCCL finetuning objective, allowing one relation to form multiple different clusters, thus further
reducing the distributional gap between pretraining and finetuning.

7.2 Related Work

Document-level RE. Existing document-level RE models can be classified into graph-based and
sequence-based models. Graph-based models construct document graphs spanning across sentence
boundaries and use graph encoders such as the graph convolution network (GCN; [66]) to aggregate
information. Particularly, Quirk & Poon [266] build document graphs using words as nodes with
inner- and inter-sentence dependencies (e.g., syntactic dependencies, coreference, etc.) as edges.
Later work extends this idea by applying different network structures [264, 267] or introducing other
node types and edges [255, 268, 269]. On the other hand, sequence-based methods [27, 270, 271]
use PLMs to learn cross-sentence dependencies without using graph structures. Particularly, Zhou,
Huang, Ma & Huang [27] propose to enrich relation mention representation by localized context
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pooling. Zhang, Chen, Xie, Deng, Tan, Chen, et al. [270] propose to model the inter-dependencies
between relation mentions by semantic segmentation [272]. In this work, we study a general method
of self-supervised RE. Therefore, our method is independent of the model architecture and can be
adapted to different RE models.

Low-resource RE. Labeled RE data may be scarce in real-world applications, especially in low-
resource and high-stakes domains such as finance and biomedicine. Much effort has been devoted
to training RE models in low-resource settings. Some work tackles low-resource RE by indirect
supervision, which solves RE by other tasks such as machine reading comprehension [273], textual
entailment [25], and abstractive summarization [274]. However, indirect supervision may not
be practical in high-stake domains, where annotated data for other tasks are also scarce. Other
efforts [256–258, 275, 276] improve low-resource RE by pretraining on large corpora. Specifically,
Baldini Soares, FitzGerald, Ling & Kwiatkowski [256] propose an MTB objective that encourages
the representations of relation mentions containing the same entity pairs to be similar. Peng, Gao,
Han, Lin, Li, Liu, et al. [257] propose to pretrain on distantly labeled corpora, where they seek
to represent the relation mentions of the same distant label to be similar. They also introduce a
contrastive learning based training objective to improve representation learning. Qin, Lin, Takanobu,
Liu, Li, Ji, et al. [258] further introduce an entity discrimination task and pretrain the RE model on
distantly labeled document corpora. We study self-supervised pretraining for document-level RE.
We study how to reduce the gap between pretraining and finetuning, which is critical to bridge the
training signals obtained in these two stages but has been overlooked in prior work.

7.3 Method
In this work, we study a self-supervised approach for document-level RE. Given a document d
and a set of entities {ei}N

i=1, where each entity ei can have one or multiple entity mentions in the
document, document-level RE aims at predicting the relations of all entity pairs (es,eo)s,o∈{1,...,N}
from a predefined set of relationships R (including an NA class indicating no relation exists), where
es and eo are the subject and object entities, respectively. In the self-supervised RE setting, we have
a large unlabeled document corpus for pretraining and a labeled RE dataset for finetuning. The
document corpus has been annotated with entity mentions and the associated named entity types
but no relations. Our goal is to train a document-level RE classifier, especially in the low-resource
setting.

Our training pipeline consists of two phases: pretraining and finetuning. In pretraining, we
use the (unlabeled) document corpus to pretrain the relation mention representations based on our
improved matching-the-blanks training objective (MTB; [256]), where the LM learns to decide
whether two relation mentions contain the same entity pairs or not, and the learning of representation
is enhanced with contrastive learning. In finetuning, we continue to train the pretrained model
on relation-labeled data using a multi-center contrastive loss (MCCL), which achieves better
performance than the traditional classifier paradigm due to the better-aligned learning objective
with pretraining. After training, we use k-nearest neighbor (kNN) inference that suits well the
contrastively finetuned model.

The rest of this section is organized as follows: we introduce the model architecture used in
both pretraining and finetuning in Section 7.3.1, the pretraining process in Section 7.3.2, finetuning
in Section 7.3.3, and inference in Section 7.3.4.
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7.3.1 Model Architecture

Encoder. Given a document d = [x1,x2, ...,xl], we first mark the spans of the entity mentions by
adding special entity markers [E] and [/E] to the start and the end of each mention. Then we encode
the document with a PLM to get the contextual embedding of textual tokens:

HHH = [hhh1,hhh2, ...,hhhl] = PLM([x1,x2, ...,xl]) .

We take the contextual embedding of [E] at the last layer of the PLM as the embedding of
entity mentions. We accumulate the embedding of mentions corresponding to the same entity by
LogSumExp pooling [264] to get the entity embedding hhhei .

Relation Embedding. Given a relation mention t = (es,eo,d), where es and eo are the subject and
object entities, respectively, we represent the relation mention as:

zzzt =WWW linear

[
hhhes,hhheo ,ccc

(es,eo)
]
.

Here hhhes,hhheo ∈ Rd are the entity embedding vectors, ccces,eo ∈ Rd is the localized context encoding
for (es,eo), WWW linear ∈ R3d×d is a linear projector. The localized context encoding is introduced
by Zhou, Huang, Ma & Huang [27] to derive the context embedding conditioned on a relation
mention, which finds the context that both the subject and object entities attend to. Specifically,
denote the multi-head attention in the last layer of PLM as AAA ∈ Rm×l×l , where m is the number of
attention heads, l is the input length, we first take the attention scores from [E] as the attention from
each entity mention, then accumulate the attention of this entity mention by mean pooling to get the
entity-level attention AAA(ei) ∈ Rm×l . Finally, we compute ccc(es,eo) by:

AAA(es,eo) = AAA(es)⊙AAA(eo),

qqq(es,eo) =
m

∑
i=1

AAA(es,eo)
i ,

aaa(es,eo) = qqq(es,eo)/111⊺qqq(es,eo),

ccc(es,eo) = HHH⊺aaa(es,eo).

We introduce in the rest of the section how to pretrain and finetune the RE model based on the
relation embedding zzz(es,eo).

7.3.2 Pretraining
We pretrain the LM on the document corpus using the MTB objective. MTB is based on a simple
assumption that, in contrast to different entity pairs, it is more often for the same entity pair to be
connected with the same relation. The MTB objective transforms the similarity learning problem
into a pairwise binary classification problem: given two relation-describing utterances where entity
mentions are masked, the model classifies whether the entity pairs are the same or not. This
pretraining objective has shown effectiveness in several sentence-level RE datasets[19, 20, 24].

However, when it comes to document-level RE, Qin, Lin, Takanobu, Liu, Li, Ji, et al. [258]
have observed no improvement led by the vanilla MTB pretraining. Therefore, we replace the
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pairwise binary classification with contrastive learning, which is adopted in later RE pretraining
works [257, 258] and can effectively learn from more positive and negative examples. Details of
training objectives are elaborated in the rest of the section.

Training objective. The overall goal of pretraining is to make the relation embedding of positive
pairs closer than that of negative pairs. We use the InfoNCE loss [136] to model this objective.
Given the documents in batch, P as the set of all positive relation mention pairs, and Nt denote the
set of negative relation mentions w.r.t. relation mention t, the loss for relation mention pairs is2:

Lrel =− 1
|P| ∑

ti,t j∈P

log
esim(zzzti ,zzzt j )/τ

Zti
, (7.1)

Zti = esim(zzzti ,zzzt j )/τ + ∑
tk∈Nti

esim(zzzti ,zzztk )/τ ,

where sim(zzzti,zzzt j) denotes the similarity between the relation mention ti and t j. Following Chen,
Kornblith, Norouzi & Hinton [137], we use cosine similarity as the similarity metric. Similar to
SimCSE [277], we further add a self-supervised contrastive loss that requires the same relation
embedding augmented by different dropout masks to be similar, thus encouraging the model to
learn more instance discriminative features that lead to less collapsed representations. Specifically,
denote the two relation embedding of t derived by different dropout masks as zzzt and ẑzzt , respectively,
the set of all relation mentions in the batch as T , and the set of relation mentions in positive pairs
as TP, the self-supervised loss is formulated as:

Lself =− 1
|TP| ∑

ti∈TP

log
esim(zzzti ,ẑzzti)/τ

Zti
,

Zti = esim(zzzti ,ẑzzti)/τ + ∑
tk∈T \{ti}

esim(zzzti ,ẑzztk )/τ .

Finally, we use a masked language model loss Lmlm to adapt the LM to the document corpus. The
overall pretraining objective is:

Lpretrain = Lrel +Lself +Lmlm.

For faster convergence, we initialize our model with a PLM that is pretrained on a larger corpus,
and continually pretrain the PLM on the document corpus with our new pretraining objectives. We
use BERT [14] for the general domain and PubmedBERT [278] for the biomedical domain.

7.3.3 Finetuning
After pretraining, we finetune the LM on labeled document-level RE datasets. In previous stud-
ies [256–258], pretraining and finetuning are conducted in processes with different learning ob-
jectives. Specifically, after using the pretrained weights to initialize a RE classifier, the model
is finetuned with a classification-based training objective. Based on our model architecture, a

2Similar to Baldini Soares, FitzGerald, Ling & Kwiatkowski [256], we randomly mask the entities in documents
with a probability of 0.7 to avoid shortcut learning.
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Classifier BioRED Re-DocRED

One-cluster
Softmax 28.6 39.3
Nearest centroid 12.5 4.1

Multi-cluster
kNN 36.7 54.1

Table 7.1: Probing results (in F1) on the test set of BioRED and Re-DocRED.

straightforward finetuning method is to add a softmax classifier upon the relation embedding, for
which a cross-entropy loss for a batch of relation mentions T is formulated as:

Pti
r = softmax(WWW rzzzti +br),

Lce =− 1
|T | ∑

ti∈T

log(Pti
yti
),

where yt is the ground-truth label for relation mention t, WWW r,br are the weight and bias of the
classifier. Though this approach has shown improvements, it may produce sub-optimal outcomes
from MTB pretraining since it implicitly assumes that relation mentions corresponding to the same
relation are in the same cluster, while MTB pretraining may learn multiple clusters for a relation.
For example, the entity pairs (Honda Corp., Japan) and (Mount Fuji, Japan), although likely to be
expressed with the same relation country in documents, are likely to be in different clusters since
MTB views them as negative pairs due to different entity names. Therefore, we propose an MCCL
objective that can bridge these gaps. Next, we will discuss the distributional assumption of the
softmax classifier as well as supervised contrastive loss, then present our MCCL objective.

Distributional assumption. We conduct a probing analysis on the distribution of pretrained
representations to further justify the multi-cluster assumption. Specifically, we fix the weights of
the pretrained MTB model and fit different classifiers on top of it, including a softmax classifier,
nearest centroid classifier (both assuming one cluster for a relation), and kNN classifier (assuming
multiple clusters for a relation). We evaluate these classifiers on the test set. Results are shown in
Table 7.1. We find that kNN greatly outperforms other classifiers, showing that MTB pretraining
learns multiple clusters for a relation.

Therefore, to accommodate this multi-cluster assumption, we need to finetune the representations
with a training objective that suits multiple clusters for each relation. Besides using the softmax
classifier with cross-entropy loss, we also consider supervised contrastive loss (SupCon; [154, 155]),
which is shown to be more effective than softmax on NLP tasks. SupCon has a similar loss form to
InfoNCE in Eq. (7.1), except that it uses instances of the same/different relations as positive/negative
pairs. However, previous work [261] has shown that both softmax and SupCon are minimized when
the representations of each class collapse to the vertex of a regular simplex. In our case, this means
the relation embedding corresponding to the same relation in pretraining collapses to a single point,
which creates a distributional gap between pretraining and finetuning.
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Training objective. We thereby propose the MCCL objective. Given relation mentions T and sets
of relation mentions grouped by their relations {Tr}r∈R , our loss is formulated as:

w(ti,t j)
r =

esim(zzzti ,zzzt j )/τ1

∑tk∈Tr\{ti} esim(zzzti ,zzztk )/τ1
,

sti
r = ∑

t j∈Tr\{ti}
w(ti,t j)

r sim(zzzti,zzzt j),

Pti
r = softmax((sti

r +br)/τ2),

Lmccl =− 1
|T | ∑

ti∈T

log(Pti
yti
),

where τ1 and τ2 are temperature hyperparameters, br ∈ R is the classwise bias. The loss calculation
can be split into two parts. First, we calculate the similarity between ti and relation r, which is a
weighted average of the similarity between ti and t j ∈ Tr such that a more similar t j has a larger
weight. Next, we use the cross-entropy loss to make the similarity of ground-truth relation larger
than others. In this way, MCCL only optimizes ti to be similar to a few closest relation mentions of
the ground-truth relation, and thus encourages multiple clusters in relation embedding.

Proxies. We use batched training for finetuning, where relation mentions in the current batch are
used to calculate MCCL. However, it is possible that a subset of relations in R, especially the
long-tail relations, are rare or missing in the current batch. When Tr\{ti} is empty, sti

r and the
MCCL loss become undefined. To tackle this problem, we propose the use of proxies [279, 280].
We add one proxy vector pr for each relation r, which is a trainable parameter and associated with
an embedding zzzp

r . We incorporate the proxies into MCCL by changing Tr to T ′
r = Tr ∪{pr},

ensuring that T ′
r \{ti} is never empty in training and preventing MCCL from becoming undefined.

The proxies are randomly initialized and updated during training by backward propagation.

7.3.4 Inference

We use the classwise kNN [281] for inference, which predicts relations based on similarly repre-
sented instances and thus aligns with our contrastive finetuning objective. Given a new relation
mention to predict, we first find k most similar instances3 in the training data of each relation
(including NA), then calculate the average cosine similarity of each relation savg

r . Finally, the model
returns the relation with the maximum savg

r +br for single-label prediction, and all relations with
higher savg

r + br than NA for multi-label prediction. We use classwise kNN because it is more
suitable for RE datasets, where the label distribution is usually long-tailed [282].

7.4 Experiments
We evaluate our proposed method with a focus on low-resource RE (Sections 7.4.1-7.4.3), and
present detailed analyses (Section 7.4.4) and visualization (Section 7.4.5) to justify method design
choices.

3Measured by cosine similarity. If a relation has fewer than k mentions in training data, we use all of its mentions.
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7.4.1 Datasets

We conduct experiments with two document-level RE datasets. The BioRED dataset [11] is a
manually labeled single-label RE dataset in the biomedical domain. The relation mentions are
classified into 9 types (including an NA type indicating no relation). It has a training set consisting
of 400 documents, which we use in finetuning. For pretraining, we use the PubTator Central
corpus [283], which annotates the PubMed corpus with entity mentions and their named entity types.
The Re-DocRED dataset [265] is a multi-label large-scale dataset of the general domain. It is a
relabeled version of the DocRED dataset [21]. Re-DocRED addresses the incomplete annotation
issue of DocRED, where a large percentage of relation mentions are mislabeled as NA. The relation
mentions in Re-DocRED are classified into 97 types (incl. NA). It has a training set consisting of
3,053 documents, which we use in finetuning. For pretraining, we use the distantly labeled training
set provided by DocRED, which consists of 101,873 documents. We remove the relation labels and
use our improved MTB to pretrain the model.

7.4.2 Experimental Setup

Model configurations. We implement our models using Hugging Face Transformers [167]. We
use AdamW [284] in optimization with a weight decay of 0.01. During pretraining, we use a batch
size of 16, a learning rate of 5e-6, a temperature of 0.05, and epochs of 3 and 10 for BioRED and
DocRED, respectively. During finetuning, we use a batch size of 32, a learning rate of 5e-5, and
epochs of 100 and 30 for BioRED and DocRED, respectively. The temperatures in MCCL are set to
τ1 = τ2 = 0.2 for BioRED and τ1 = 0.01,τ2 = 0.03 for DocRED. We search k from {1,3,5,10,20}
for kNN using the development set4. We run experiments with Nvidia V100 GPUs.

Evaluation settings. In this work, in addition to the standard full-shot training, we consider
low-resource settings. To create each of the settings, we randomly sample a fixed proportion p%
of the relation mentions from the training set as our training data, and use the original test set for
evaluation. We use the same evaluation metrics as the original papers. We use micro-F1 for BioRED,
and micro-F1 and micro-F1-Ign for Re-DocRED. The micro-F1-Ign removes the relational facts in
the test set that have appeared in training.

Compared methods. We experiment with the following finetuning objectives: (1) Lazy learning,
which directly uses the pretrained embedding and training data to perform kNN without finetuning;
(2) Cross-entropy loss (CE), which adds a softmax classifier on top of PLM and uses cross-entropy
loss to finetune the model; (3) Supervised contrastive loss (SupCon); and (4) Multi-center
contrastive loss (MCCL). In inference, classwise kNN is used for all methods except for CE. Note
that as SupCon does not apply to multi-label scenarios, we only evaluate it on BioRED. For each
objective, we also evaluate the PLM before and after MTB pretraining. We use different PLMs as
the backbone of the model, namely PubmedBERTBASE for BioRED and BERTBASE for Re-DocRED,
which are pretrained on the biomedical and general domains, respectively.

4For low-resource setting with p% of training data, we sample p% of development data as the development set.

89



Encoder Objective 1% 5% 10% 100%
F1 F1-Ign F1 F1-Ign F1 F1-Ign F1 F1-Ign

PLM

Lazy 15.6 14.9 20.1 19.4 21.6 19.2 28.7 28.0
CE 40.3 38.9 54.1 52.6 61.3 60.3 70.9 69.4

MCCL 44.7 43.1 59.1 57.5 63.2 61.8 68.2 66.7

MTB

Lazy 35.2 34.4 44.7 43.4 47.3 46.2 54.1 52.9
CE 42.3 40.7 57.9 56.4 62.9 61.4 71.2 69.9

MCCL 46.4 44.5 59.7 58.2 63.8 62.1 69.3 67.9

Table 7.2: Results on the test set of Re-DocRED.

Encoder Objective 1% 5% 10% 100%

PLM

Lazy 14.5 17.6 18.8 28.3
CE 24.1 35.4 42.5 57.7

SupCon 20.0 30.9 38.0 52.2
MCCL 20.8 41.3 45.5 55.1

MTB

Lazy 24.3 28.4 34.4 36.7
CE 28.6 41.2 49.8 61.5

SupCon 24.4 29.1 31.4 43.1
MCCL 34.6 48.5 54.2 60.8

Table 7.3: F1 on the test set of BioRED.

7.4.3 Main Results

The results on the test sets of Re-DocRED and BioRED are shown in Table 7.2 and Table 7.3,
respectively. All results are averaged for five runs of training using different random seeds. Overall,
the combination of MTB and MCCL achieves the best performance in low-resource settings where
1%, 5%, and 10% of relation-labeled data are used. Further, when using the same MTB-based
representations, MCCL shows better results than CE in low-resource settings. It shows that in
low-resource settings, MCCL can better leverage the pretraining knowledge with a well-aligned
finetuning objective. However, this improvement diminishes when abundant labeled data are
available, as MCCL underperforms CE on both datasets with full training data on both datasets. In
addition, we observe that MTB pretraining consistently improves MCCL and CE on both datasets.
These results demonstrate the effectiveness of MTB pretraining for more precise document-level
RE with less needed end-task supervision.

Considering other training objectives, we observe that lazy learning produces meaningful results.
On both datasets, the results of lazy learning based on MTB with 10% of data are comparable to
finetuning with 1% of data. This shows that the relation embedding pretrained on unlabeled corpora
contains knowledge that can be transferred to unseen relations. We also observe that SupCon using
kNN-based inference underperforms both CE and MCCL on BioRED, showing that its one-cluster
assumption hurts the knowledge transfer.
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Pretraining Objective 1% 10% 100%

PLM 20.8 45.5 55.1
vanilla MTB 22.9 45.0 56.0
our MTB 34.6 54.2 60.8

w/o Lrel 21.0 47.1 56.7
w/o Lself 24.1 49.3 58.6
w/o Lmlm 32.9 50.2 58.2

Table 7.4: F1 on the test set of BioRED with different pretraining objectives. We use MCCL in
finetuning.

0.01 0.20.3 0.5 1.0
Temperature

15

20

25

30

35

40

F1

1
2

Figure 7.1: F1 using different temperatures on 1% of BioRED.

7.4.4 Ablation Study

Pretraining objectives. We analyze the effectiveness of our proposed pretraining losses in Sec-
tion 7.3.2. To do so, we pretrain the model with one loss removed at a time while keeping the
finetuning setup on BioRED fixed with the MCCL loss. The results are shown in Table 7.4. Overall,
we observe that all losses are effective. If we remove all proposed techniques and use the vanilla
MTB pretraining objective of binary pairwise classification, the results are only slightly better or
even worse. Among the techniques, removing Lrel leads to the largest performance drop, showing
that MTB-based pretraining is critical to improve low-resource RE. Removing Lself also leads to a
large performance drop. It is because Lself encourages the model to learn more discriminative fea-
tures that lead to less collapsed representations. Our finding aligns with recent studies in computer
vision [285, 286], showing that reducing collapsed representations with self-supervised contrastive
learning improves the transferability to downstream tasks.

Performance w.r.t. different temperatures. We discuss the impact of two temperatures in MCCL.
In MCCL, τ1 controls the weighting of instances. With a very small τ1, each instance will only
form a cluster with its nearest neighbor in the batch, while with very large τ1, instances of the same
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Figure 7.2: F1 under different percentages of BioRED training data.

relation will collapse to the same cluster. τ2 controls the importance of hard instances, which is
also used in other contrastive losses (e.g., τ in Eq. (7.1)). Wang & Liu [287] observe that small τ2
makes the model focus more on hard instances, while Khosla, Teterwak, Wang, Sarna, Tian, Isola,
et al. [154] observe that too small τ2 leads to numerical instability. We show the results of using
different temperatures in Figure 7.1, where we keep one temperature fixed and change the other.
For τ1, we find that using large temperature harms the performance significantly, showing that our
multi-cluster assumption improves low-resource RE. For τ2, we observe that both small and large
values impair the performance, which is aligned with prior observations.

Performance w.r.t. different amount of data. The main results show that MCCL outperforms
CE in the low-resource setting, while slightly underperforming CE when full training data is used.
We further evaluate MCCL and CE using different amounts of end-task data. We experiment on
BioRED and use the relation embedding pretrained with MTB. Results are shown in Figure 7.2. We
observe that MCCL consistently outperforms CE by a large marge when less than 20% of training
data is used, while it performs similarly or worse than CE after that. It again demonstrates the
effectiveness of MCCL in low-resource RE. However, as the pretraining and finetuning are based
on different tasks, fully adapting the model to downstream data by CE results in similar or better
performance in data-sufficient scenarios.

7.4.5 Visualization

Figure 7.3 shows the t-SNE [168] projection of relation embedding finetuned with different ob-
jectives on BioRED. For clarity, we visualize the embedding of the four most frequent relations
in BioRED with different colors, including the NA class shown in grey. The visualization shows
that both CE and SupCon learn one cluster for each relation, while lazy learning and MCCL, as
expected, generate multiple small clusters for a relation. This observation indicates that MCCL can
better align with the pretraining objective, further explaining its better performance in low-resource
settings.
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Figure 7.3: Visualization of relation embedding finetuned with different objectives on BioRED. NA

instances are shown in grey.

7.5 Conclusion
We study self-supervised learning for document-level RE. Our method conducts an improved
MTB pretraining objective that acquires cheap supervision signals from large corpora without
relation labels. To bridge the gap between pretraining and end-task finetuning, we propose a
continual contrastive finetuning objective, in contrast to prior studies that typically use classification-
based finetuning, and use kNN-based inference. As pretrained representation may form multi-
cluster representation, we further propose a multi-center contrastive loss that aligns well with the
nature of the pretrained representation. Extensive experiments on two document-level RE datasets
demonstrate the effectiveness of these key techniques in our method. Future work is adapting our
method to other tasks in information extraction, such as n-ary relation extraction, named entity
recognition, typing, and linking.
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Chapter 8

Conclusion and Future Work

8.1 Summary
In this dissertation, we aim to build robust and generalizable knowledge acquisition systems. Our
contributions can be summarized into three aspects:

1. We propose a framework for extracting knowledge from long contexts such as documents.

2. We study the robustness of knowledge acquisition systems from multiple aspects, including
robustness to noisy training labels, out-of-distribution instances, and knowledge conflicts.

3. We investigate methods for building data-efficient knowledge acquisition systems. This
includes data annotation by neural rule grounding, as well as improving data efficiency
through continual contrastive finetuning.

More specifically, in Chapter 2, we proposed the ATLOP model for document-level relation
extraction, featuring two techniques, namely adaptive thresholding and localized context pooling.
Adaptive thresholding learned a threshold class that decides the best threshold for each entity pair.
Localized context pooling utilized attention in PLMs to locate salient contexts for entity pairs.

In Chapter 3, we proposed a co-regularization framework for learning from noisy training labels.
This framework involved multiple models with identical structures but different initializations,
optimizing an agreement loss to encourage them to give similar predictions on the same inputs.
On noisy examples, where model predictions often deviate from the labels, the agreement loss
prevented overfitting on noisy labels.

In Chapter 4, we presented an unsupervised OOD detection framework for pretrained Trans-
formers. We systematically investigated the combination of contrastive losses and scoring functions.
Specifically, we proposed a margin-based contrastive objective for learning compact representa-
tions that, when combined with the Mahalanobis distance, achieved near-perfect OOD detection
performance on various tasks and datasets.

In Chapter 5, we addressed the faithfulness issue of LLMs, particularly in scenarios with
knowledge conflict and prediction with abstention. We proposed two effective methods to enhance
LLMs’ faithfulness to contexts: opinion-based prompts and counterfactual demonstrations, which
significantly improve the faithfulness of LLMs to contexts.

In Chapter 6, we proposed the NERO framework for label-efficient relation extraction. The
framework involved automatically extracting frequent patterns from large raw corpora and requesting
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users to create labeling rules. To improve the coverage of these rules, we proposed a soft-matching
mechanism, where unlabeled sentences are annotated using their most semantically similar labeling
rules and weighted when training the RE model.

Finally, in Chapter 7, we proposed a self-supervised framework to utilize unlabeled data in
knowledge acquisition. We pretrained the model using an improved MTB pretraining objective. To
address the gap between pretraining and end-task finetuning, we proposed a continual contrastive
finetuning objective and kNN-based inference. We further proposed a multi-center contrastive loss
that aligns well with the nature of the pretrained representation.

This dissertation thoroughly addresses several challenges of knowledge acquisition in real-world
applications. The methods proposed in this research support a wide range of applications, including
but not limited to constructing knowledge bases, handling knowledge-intensive NLP tasks such as
question answering, fact verification, and dialogue, as well as biomedical and clinical applications
such as in-silico biomedical research and precision medicine.

8.2 Future Directions
We discuss several promising future directions.

• Universal knowledge acquisition. Most current knowledge acquisition systems are designed
for specific tasks (such as entities, events, etc.) or domains (such as general, biomedical,
finance, etc.). Unifying these domains and tasks offers two significant advantages. First,
many knowledge acquisition tasks require common information, such as syntactic features
like dependencies, which are essential for both entity [30] and event-centric relation extrac-
tion [288]. In addition, the outputs of entity or event detection tasks are typically used as
inputs for relation extraction tasks. As such, unifying different knowledge acquisition tasks
can improve the ability to learn and utilize shared cross-task information. Second, by jointly
learning across multiple domains, a knowledge acquisition system can learn transferable
features that generalize to different domains, resulting in improved domain generalization
ability. As a result, universal knowledge acquisition has the potential to perform any task in
any distribution in a zero-shot manner, which can significantly benefit real-world applications,
particularly in high-stakes domains.

• Cross-document knowledge acquisition. In addition to relations within a single document,
some relations may require complex reasoning over multiple documents. As highlighted
in a recent quantitative study [289], over 57.6% of relational facts in Wikidata involve
subject and object entities that do not appear in the same Wikipedia document. Therefore,
cross-document knowledge acquisition represents a more practical direction for developing
practical knowledge acquisition systems. This problem also poses new research challenges,
such as retrieving salient contexts from multiple documents and performing multi-step cross-
document relation reasoning.

• Fact-checking for large language models. Large language models such as ChatGPT are
increasingly popular in natural language processing. However, their responses may contain
factual errors despite being seemingly plausible [290]. Therefore, fact-checking the outputs
of these models is critical for ensuring AI safety. To achieve this, knowledge acquisition
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systems can be used to convert the models’ responses into structured formats, making them
easier to align and verify against existing knowledge bases. This approach can enhance
the accuracy of language models and reduce the potential harm caused by misinformation,
ultimately advancing the development of responsible and reliable AI systems.
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training sets, quickly in Advances in neural information processing systems (2016),
3567–3575.

90. Huang, Y. & Du, J. Self-Attention Enhanced CNNs and Collaborative Curriculum Learning
for Distantly Supervised Relation Extraction in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP) (Association for
Computational Linguistics, Hong Kong, China, 2019), 389–398.

91. Mayhew, S., Chaturvedi, S., Tsai, C.-T. & Roth, D. Named Entity Recognition with Partially
Annotated Training Data in Proceedings of the 23rd Conference on Computational Natural
Language Learning (CoNLL) (Association for Computational Linguistics, Hong Kong,
China, 2019), 645–655.

92. Qin, P., Xu, W. & Wang, W. Y. Robust Distant Supervision Relation Extraction via Deep
Reinforcement Learning in Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (Association for Computational
Linguistics, Melbourne, Australia, 2018), 2137–2147.

104



93. Wang, Z., Shang, J., Liu, L., Lu, L., Liu, J. & Han, J. CrossWeigh: Training Named Entity
Tagger from Imperfect Annotations in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP) (Association for Computational
Linguistics, Hong Kong, China, 2019), 5154–5163.

94. Toneva, M., Sordoni, A., des Combes, R. T., Trischler, A., Bengio, Y. & Gordon, G. J. An
Empirical Study of Example Forgetting during Deep Neural Network Learning in 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019 (OpenReview.net, 2019).

95. Jiang, L., Zhou, Z., Leung, T., Li, L. & Fei-Fei, L. MentorNet: Learning Data-Driven
Curriculum for Very Deep Neural Networks on Corrupted Labels in Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
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with Natural Language Explanations. Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
doi:10.18653/v1/p18-1175 (2018).

229. Rosenberg, C., Hebert, M. & Schneiderman, H. Semi-supervised self-training of object
detection models (2005).

230. Hendrickx, I., Kim, S. N., Kozareva, Z., Nakov, P., Ó Séaghdha, D., Padó, S., et al.
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